Circle the best answer.

1. Find the slope of the tangent line to the graph of \(g(x) \) at \(x = 1 \).
 \[g(x) = \frac{x^3 - 3x^2 + 4x - 1}{x + 1} \]
 (a) \(\frac{1}{4} \) (b) \(-\frac{1}{4}\) (c) \(\frac{3}{4}\) (d) \(-\frac{3}{4}\) (e) \(-\frac{5}{4}\)

2. Consider the graph of \(f \). Determine the relationship of \(\Delta y \) and \(dy \) given a change in the domain from \(x \) to \(x + \Delta x \).

3. Given \(h \) at right, find \(h'(c) \).
 \[h(x) = \sin^2 \sqrt{1 - 3x} \]
 (a) \(-6 \sin 1 \cos 1\) (b) \(-6 \sin 1\) (c) \(-3 \sin 1 \cos 1\) (d) \(-3 \sin 1\)

4. Explain why \(f \) is not differentiable at \(x = 0 \).
 \[f(x) = \begin{cases} \sqrt[3]{x}, & 0 \leq x \\ x^2, & x < 0 \end{cases} \]
 (a) \(f'_-(0) = -\infty \) (b) \(f'_+(0) = 0 \neq f'_-(0) \) (c) \(f'_+(0) = -\infty \)
 (d) \(\lim_{x \to 0^-} f'(x) = 0 \neq f'_-(0) \) (e) \(\lim_{x \to 0^+} f'(x) = \infty \)

Show all work on remaining problems.

5. (a) Use the limit definition of the derivative to find \(f'(x) \).
 \[f(x) = \frac{1}{x+2} \]
 (b) Find the equation of the tangent line to \(f \) at \(x = 0 \).
 (c) Graph \(f \) and the tangent line.
6. Use the Intermediate Value Theorem to show the equation has a solution on the interval \((0, 1)\). Hint: define a function.

\[x^5 - x^2 + 3x - 1 = 0 \]

7. Find the linear approximation for \(f(b) \) if the independent variable changes from \(a \) to \(b \).

\[f(x) = (x + 1) \cos x \]
\[a = 0^\circ, \quad b = 2^\circ \]

8. Consider the equation.

Find \(\frac{dy}{dx} \).

\[x^3 - \sqrt{xy} + y^2 = 1 \]

9. Consider the function \(f \) given:

\[f(x) = \begin{cases}
1, & x \leq 0 \\
\sqrt{x}, & 0 < x
\end{cases} \]

(a) Use the limit definition of one-sided derivatives to find \(f'_+(0) \) and \(f'_-(0) \).

(b) Does \(f'_x(0) \) exist? Explain.

(c) Evaluate \(\lim_{x \to 0^+} f'_x(x) \).

(d) **Extra Credit**: graphically explain the answers to parts (a) and (c).
\[g(x) = \frac{x^3 - 3x^2 + 4x - 1}{x+1} \]
\[g'(x) = \frac{(x+1)(3x^2 - 6x + 4) - (x^2-3x^2+4x-1)x}{(x+1)^2} \]
\[g'(x) = \frac{(2x+1) - x(2x+1)}{(x+1)^2} = \frac{x}{4}, \text{ Ans (a)} \]

\[h(x) = \sin^2(1-3x)^{1/2} \]
\[h'(x) = 2 \sin(y-3x) \cdot \cos(y-3x) \cdot \frac{-3}{2x-3x} \]
\[h'(0) = 2 \sin 1 \cdot \cos 1 \cdot \frac{-3}{2} = -3 \sin 1 \cdot \cos 1, \text{ Ans (c)} \]

\[f(x) = \begin{cases} x^{1/3}, & 0 \leq x \\ x^2, & x < 0 \end{cases} \]
\[f'(x) = \begin{cases} \frac{1}{3x^{2/3}}, & 0 < x \\ 2x, & x < 0 \end{cases} \]
\[\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} \frac{1}{3x^{2/3}} = +\infty, \text{ Ans (e)} \]

\[f(x) = x^5 - x^2 + 3x - 1 \]
To show \(f(c) = 0 \) for some \(c \) in (0,1).

\[f(0) = -1, \quad f(1) = 2 \Rightarrow f(0) < f(1). \]
\[f \text{ being a poly is cont on } (\infty, \infty) \]
and so certainly is cont on the subset [0,1]. We have established

\[\text{the hypothesis of IVT. By the conclusion of IVT, there exists } c \text{ in (0,1) where } f(c) = 0 = 0. \]

(Note that \(f(0) \neq 0 \Rightarrow c \neq 0 \)
and \(f(1) \neq 0 \Rightarrow c \neq 1. \)
\[\Rightarrow c \text{ is not an endpoint.} \)
\[f'(0) = \frac{f(h) - f(0)}{h} \quad \text{as } h \to 0 \]

\[f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{f(0) + 0.5h^2 - f(0)}{h} = \lim_{h \to 0} \frac{0.5h^2}{h} = \lim_{h \to 0} 0.5h = 0 \]

\[f(x) = \begin{cases} 1, & x = 0 \\ x^2, & x \neq 0 \end{cases} \]

\[f'(x) = \begin{cases} 2x, & x \neq 0 \\ \text{undefined}, & x = 0 \end{cases} \]

\[f(x) = 1 + \tan(x) \]

\[f(x) = \frac{1}{x} \cos x \]

\[f(x) = \frac{1}{x} \sin x \]

\[f(x) = \frac{1}{x} \cos x \]

\[f(x) = \frac{1}{x} \sin x \]

\[f(x) = \frac{1}{x} \cos x \]

\[f(x) = \frac{1}{x} \sin x \]

\[f(x) = \frac{1}{x} \cos x \]