Choose the best answer.

1. Find the derivative of \(f(x) = (x-1)(3-5x) \).
 (a) \(8-10x \)
 (b) \(-2-10x \)
 (c) \(\frac{(x-1)(3-5x)}{5} \)
 (d) \(\frac{(x^2-x)(3x-5x^2)}{5} \)
 (e) \(-2 \)

2. Let \(f(x) = \sqrt{x} \), \(g(x) = \sqrt{x} \), \(k(x) = x^2 \), \(l(x) = x^3 \). Choose the function having the largest average rate of change as \(x \) goes from 1 to 2.
 (a) \(f \)
 (b) \(g \)
 (c) \(h \)
 (d) \(k \)
 (e) cannot be determined.

3. Given the same functions of problem 2, which function gives the largest instantaneous rate of change at \(x = 1 \).
 (a) \(f \)
 (b) \(g \)
 (c) \(h \)
 (d) \(k \)
 (e) cannot be determined.

4. Select all statements below that are (always) true for any function \(f(x) \).
 I. If \(\lim_{x \to a} f(x) = f(a) \), then \(f \) is differentiable at \(x = a \).
 II. If \(f \) is differentiable at \(x = a \), then \(\lim_{x \to a} f(x) = f(a) \).
 III. If \(\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) \), then \(\lim_{x \to a} f(x) = f(a) \).
 (a) I
 (b) II
 (c) III
 (d) I, III
 (e) II, III

5. Let \(f(x) = \frac{(x-1)(x-2)}{x+5} \). Select the answer below that identifies all true statements in the list:
 I. The maximum domain of \(f \) is \(\mathbb{R} \), \(x \neq -5, x \neq 1, x \neq 2 \).
 II. The \(x \)-intercepts are \((1,0)\) and \((2,0)\).
 III. The vertical asymptote is \(x = -5 \).
 IV. The horizontal asymptote is \(y = 1 \).
 (a) I, II, IV
 (b) I, III, IV
 (c) II, III, IV
 (d) I, II, III
 (e) II, III
6. Let \(f(x) = \begin{cases} -x, & x \leq 0 \\ 1-x, & x > 0 \end{cases} \).

At \(x=0 \), what type of discontinuity does \(f \) have?

(a) removable (b) jump (c) infinite (d) oscillatory (e) cannot be determined

7. Let \(f(x) = ax + b \), where \(a \) and \(b \) are constants, and where \(a > 0 \).

Select all statements from the list that are true for \(f \).

I. \(f'(x) \leq 0 \) for all real numbers \(x \).
II. \(f \) increases for all real numbers \(x \).
III. \(x = -a \) is a critical number.

(a) I (b) II (c) III (d) I and II (e) I and III

8. Let \(f(x) = ax^2 + bx + c \), where \(a, b, \) and \(c \) are constants, and where \(a > 0 \) and \(b > 0 \).

Select all statements from the list that are true about \(f \).

I. \(f'(x) \leq 0 \) on \((-\infty, \infty) \).
II. \(f \) increases on \((-\infty, \infty) \).
III. \(f''(x) > 0 \) on \((-\infty, \infty) \).

(a) I (b) II (c) III (d) I and II (e) I and III

9. Consider the following statement: if \(a^3 > g(a) > 0 \), then \(\frac{1}{a^3} < \frac{1}{g(a)} \).

Assume \(g(x) \) is a function, and \(a \) is a constant.

Choose the reason that would justify the statement.

(a) \(f(x) = \frac{1}{x} \) increases on \((0, \infty) \) (b) \(f(x) = \frac{1}{x} \) decreases on \((0, \infty) \).
(c) \(g(x) \) increases on \((-\infty, \infty) \) (d) \(g(x) \) decreases on \((-\infty, \infty) \)

10. Which condition below ensures that the discontinuity of \(h \) at \(x=1 \) is removable? \(h(x) = \frac{(x-1)^n (x+2)}{(x-1)^m} \).

(a) \(\lim_{x \to 1} h(x) = \infty \) (b) \(m > n \) (c) \(m \leq n \) (d) \(\lim_{x \to -2} h(x) = 0 \).
11. Find the limit. \(\lim_{n \to \infty} \frac{1}{n} \left[\frac{n(n+1)(2n+1)}{6n^2} - \frac{n(n+1)+4n}{2n} \right] \).
(a) 0 (b) 4 (c) 11/3 (d) 23/6 (e) \(\infty \)

Show all work on remaining problems.

12. Find the derivative. \(f(x) = 3x + \sin(\cos(x^2 - 1)) \).

13. Integrate. \(\int \frac{5}{x^2} \sqrt{\frac{2-x}{x}} \, dx \).

14. (a) Use the fact that \(\lim_{x \to \infty} \frac{1}{x^p} = 0 \) \((p > 0)\) to find the limit.
\(\lim_{x \to \infty} \frac{1 - x}{\sqrt[4]{x^2 + x + 1}} \)

(b) Use \(x = -1.25 \), \(-1000\), and \(-8000\) in a table to guess the limit.
\(\lim_{x \to -\infty} (1-x)x^{1/3} \)

15. Consider the equation \(y^3 - xy^2 + x^2 = -1 \).
(a) Find \(\frac{dy}{dx} \) in terms of \(x \) and \(y \), assuming the equation determines a differentiable function of \(x \).
(b) Find the equation of the line tangent to the above equation at \((1, -1)\).
(c) Use differentials to approximate the change in \(y \) \((dy)\) when \(x \) changes from 1 to 1.1 in the equation of part (a).

16. Let \(f(x) = 3 + x \sqrt{x + 1} \).
(a) Show \(f \) does not satisfy the hypothesis of the Mean Value Theorem on \([-2, 0]\).
(b) Show \(f \) does satisfy the hypothesis of MVT on \([-1, 0]\).
(c) Find all numbers \(c \) in \((-1, 0)\) satisfying the conclusion of MVT.
17. Consider the statement: \[\int_0^\pi \left[1 + 2x - \cos(2x) \right] dx > 0. \]

Name \(f(x) = 1 + 2x - \cos(2x) \).

(a) Prove the statement using the Closed Interval Method.

(b) Prove the statement another way. Use inequalities to establish \(f(x) > 0 \) on \([0, \pi]\), starting with finding numbers \(c \) and \(d \) such that \(c \leq \cos(2x) \leq d \).

(Do not use derivatives in part (b).)

(c) Make a sign chart for \(f' \) and a sign chart for \(f'' \) on \([0, \pi]\) to find where \(f \) increases/decreases and its concavity.

(d) Graph \(f \) on \([0, \pi]\).

18. Let \(f(x) = 4x^{3/2} - 1 \).

(a) Find \(S(x) = \int_0^x \sqrt{1 + [f'(t)]^2} \, dt \). (Also evaluate integral.)

(b) Use part (a) to find the arc length of the graph from A \((0, -1)\) to B \((4, 3)\).

(c) Find \(ds \) and \(ds \) when \(x \) changes from \(x \) to \(x + \Delta x \).

19. Let \(f(x) = \begin{cases} -|x| + 2, & x \neq 0 \\ 1, & x = 0 \end{cases} \).

(a) Find the average rate of change of \(f \) as \(x \) changes from 0 to 6.

(b) Use the answer to part (a) to find \(f'(0) \).

(c) Use "short-cut" formulas for derivatives to find \(\lim_{x \to 0} f'(x) \).

(d) On a graph of \(f \), sketch a limit of secants to confirm the answer to (b).
1. \[f(x) = (x-1)(3-5x) \]
 \[f'(x) = 1 \cdot (3-5x) + (x-1) \cdot (-5) \]
 \[= 3 - 5x - 5x + 5 \]
 \[= 8 - 10x \]
 Answer: (a) 5

4. Answer: (b) 5

5. Answer: (c) 5

6. \[f(x) = ax + b \]
 \[f'(x) = a > 0 \]
 Answer: (b) 5

7. \[f(x) = ax^2 + bx + c \]
 \[f'(x) = 2ax + b \]
 \[f''(x) = 2a > 0 \]
 Answer: (c) 5

8. Graph shows answer in (d). 5
 Also get answer by differentiating.
 \[f'(x) = \frac{1}{x}, \quad g'(x) = \frac{1}{2}, \quad h'(x) = 2 \]
 \[k'(x) = 3. \]

9. Answer: (b)

10. b

11. d
8. (a) \[\lim_{x \to \infty} \frac{1-x}{\sqrt{x^2 + x + 1}} \]
\[= \lim_{x \to \infty} \frac{(1-x) \cdot \sqrt{x^2}}{\sqrt{x^2 + x + 1} \cdot \frac{1}{\sqrt{x^2}}} \]
\[= \lim_{x \to \infty} \frac{\sqrt{1-x^2}}{1 + \frac{1}{x} + \frac{1}{x^2}} \]
\[= \frac{0}{1+0+0} \]
\[= 0 \]

(b) \[\frac{\sqrt{1-x^2}}{x} \]
\[= \frac{1}{\sqrt{3}} \]

(c) \[\lim_{x \to \infty} \frac{1-x}{\sqrt{x^2 + x + 1}} \]
\[= \lim_{x \to \infty} \frac{(1-x) \cdot \sqrt{x^2}}{\sqrt{x^2 + x + 1} \cdot \frac{1}{\sqrt{x^2}}} \]
\[= \lim_{x \to \infty} \frac{\sqrt{1-x^2}}{1 + \frac{1}{x} + \frac{1}{x^2}} \]
\[= \frac{0}{1+0+0} \]
\[= 0 \]

9. (a) \[f(x) = 3 + x \sqrt{x+1} \quad \text{dom} f = [-1, \infty) \]
\[f'(x) = 0 + 1 \cdot \frac{1}{2 \sqrt{x+1}} + \frac{x}{2 \sqrt{x+1}} \]
\[= \frac{2(x+1) + x}{2 \sqrt{x+1}} \]
\[= \frac{3x+2}{2 \sqrt{x+1}} \]

(b) \[f(x) \text{ is not defined in all of } [-2,0). \]

(c) \[f'(x) = \frac{f(x)-f(a)}{x-a} \]
\[\frac{3c+2}{2c+1} = 0 \]
\[c = -\frac{2}{3} \]

10. (a) \[f(x) = 1 + 2x - \cos(2x) \]
\[f'(x) = 2 + 2 \sin(2x) \]
\[f(c) = 0 \quad \text{min} \]

Set \(f'(c) = 0 \) on \([0, \pi]\). \[f''(\frac{\pi}{2}) = 1 + \frac{3\pi^2}{2} \]
\[\sin(2x) = -1 \]
\[2x = \frac{3\pi}{2}, \frac{7\pi}{2} \ldots \]
\[x = \frac{3\pi}{4}, \frac{7\pi}{4} \]

(b) \[-1 \leq \cos(2x) \leq 1 \]
\[-1 \leq -\cos(2x) \leq 1 \]

(c) \[f''(x) = 4 \cos(2x) \]
\[f''(x) > 0 \text{ on } [0, \pi] \]
\[x = \frac{\pi}{2}, \frac{3\pi}{2} \]

11. (a) \[f(x) = 1 - 2x - \cos(2x) \]
\[f'(x) = 2 + 2 \sin(2x) \]
\[f(c) = 0 \quad \text{min} \]

Set \(f'(c) = 0 \) on \([0, \pi]\). \[f''(\frac{\pi}{2}) = 1 + \frac{3\pi^2}{2} \]
\[\sin(2x) = -1 \]
\[2x = \frac{3\pi}{2}, \frac{7\pi}{2} \ldots \]
\[x = \frac{3\pi}{4}, \frac{7\pi}{4} \]
(a) Average rate of change

\[f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} \]

(b) \[f(x) = \sqrt{x} \]

(c) \[f'(x) = \frac{1}{2} x^{-1/2} \]

(d) \[f^{-1}(x) = x^2 \]

(e) \[\int f(x) \, dx = \frac{2}{3} x^{3/2} + C \]

(f) \[\int x e^x \, dx = \left[x^2 e^x \right] - 2 e^x + C \]

(g) \[\int \frac{1}{x^2 + 1} \, dx = \arctan(x) + C \]

(h) \[\int \frac{1}{x} \, dx = \ln|x| + C \]

(i) \[\int \frac{1}{x^2} \, dx = \frac{-1}{x} + C \]

(j) \[\int \frac{1}{x^3} \, dx = \frac{-1}{2x^2} + C \]

(k) \[\int \frac{1}{x^4} \, dx = \frac{1}{3x^3} + C \]

\[\text{Area: } \int_{0}^{1} x^2 \, dx = \frac{1}{3} \]

\[\text{Volume: } \int_{0}^{1} \pi x^2 \, dx = \frac{\pi}{3} \]