Choose the best answer.

1. Which curves in the list have horizontal asymptotes?

 I. \(y = \cos x \)
 II. \(y = \ln x \)
 III. \(y = \tan^{-1} x \)
 IV. \(y = \frac{1}{x^2} \)

(a) I, II (b) I, III (c) II, III (d) II, IV (e) III, IV

2. Find the limit as \(x \to -\infty \) of \(y = 4x^2(x-1)(2-x)^3 \).

(a) \(\infty \) (b) \(-\infty \) (c) 0 (d) 4 (e) -4

3. Choose the reason why \(g \) is discontinuous at \(x = 0 \).

\[g(x) = \begin{cases}
 x^3 - 1, & x > 0 \\
 -2x + 1, & x < 0
\end{cases} \]

(a) \(\lim_{x \to 0^+} g(x) = 0 \) (b) \(\lim_{x \to 0^+} g(x) \neq g(0) \) (c) \(g(0) \) does not exist
(d) \(\lim_{x \to 0} g(x) \) exists but \(\lim_{x \to 0^-} g(x) \) does not exist
(e) \(\lim_{x \to 0^+} g(x) \) and \(\lim_{x \to 0^-} g(x) \) exist but are \(\neq \).

4. \(f(x) = \sqrt[3]{x} \) is not differentiable at \(x = 0 \) because

(a) \(f(x) \) is not continuous at \(x = 0 \)
(b) \(f'_+(0) \neq f'_-(0) \)
(c) \(\lim_{x \to 0} |f'(x)| = \infty \)
(d) \(\lim_{x \to 0} |f(x)| = \infty \)
5. Let \(f(x) \) be a function defined on \([-2,2]\). Assume \(f(x) \) may or may not be continuous on the interval. If \(f(-2) < 0 \) and \(f(2) > 0 \) then there exists \(c \) in \((-2,2)\) such that \(f'(c) = 0 \).
(a) True (b) False

6. Choose the true statement about \(h'(x) \) when \(h(x) = \begin{cases} -x, & x \leq 0 \\ 1-x, & x > 0 \end{cases} \)
(a) \(\lim_{x \to 0^-} h'(x) = -1 \) and \(\lim_{x \to 0^+} h'(x) = \infty \)
(b) \(\lim_{x \to 0^-} h'(x) = -1 \) and \(\lim_{x \to 0^+} h'(x) = -\infty \)
(c) \(\lim_{x \to 0^-} h'(x) = \infty \) and \(\lim_{x \to 0^+} h'(x) = -1 \)
(d) \(\lim_{x \to 0^-} h'(x) = -\infty \) and \(\lim_{x \to 0^+} h'(x) = -1 \)
(e) \(\lim_{x \to 0} h'(x) = -1 \).

Show all work on remaining problems.

7. Use the definition of derivative to find \(f'(a) \) when \(f(x) = \sqrt{1-x} \).

8. Let \(C(x) = \frac{\cos x}{x} \) be the unit cost function.
(a) Find the marginal unit cost function.
(b) Find \(C'(5\pi) \) and explain its meaning. What does it predict?
(c) Compare \(C'(5\pi) \) with \(C\left(\frac{11\pi}{2}\right) - C(5\pi) \).
(d) Use the calculator to sketch the graph of \(C(x) \) on the interval \([0,20]\).

9. Find the graph of \(f'(x) \) from the graph of \(f(x) \).

10. Use algebra to find the limit. \(\lim_{x \to \infty} \frac{3-x^2}{\sqrt{1-5x} + 16x^4} \).

11. Suppose \(f(1) = -1 \), \(f'(1) = 3 \), \(g(1) = 4 \), and \(g'(1) = -5 \). Find \((fg)'(1) \).

Extra Credit: Find \(\lim_{\theta \to 0} \frac{1 - \cos(5\theta)}{5\sin\theta} \).
1. \[\frac{4x^2(x-1)(x-3)}{x-0} \]

\[\lim_{x \to 0^+} g(x) = 1 \]

\[\lim_{x \to 0^-} g(x) = -1 \]

Answer: \(-\infty\)

2. (a) Not correct: \(\lim_{x \to 0} f(x) = 0 = f(0) \Rightarrow f \text{ is cont. at } x = 0\).

(b) OK answer: \(f'(0) = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0} \frac{3h}{h} = \lim_{h \to 0} \frac{3}{h} = +\infty\)

And \(f'(0) = +\infty\) also.

3. There is no \(c\) in \((-2, 2)\) where \(f(c) = 1\).

4. (a) \(\lim_{x \to 0^+} \sqrt[3]{x} = +\infty\) in the sense that \(+\infty = +\infty\).

But they are \(\neq\) in the sense that \(+\infty\) cannot be equated because \(+\infty\) is not a real number.

(c) \(\lim_{x \to 0} \sqrt[3]{x} = \lim_{x \to 0} \left(\frac{1}{x} \right) = \lim_{x \to 0} \frac{1}{x^2} = \infty\). True.

5. (a) \(C(x) = \frac{d}{dx} \cos x = \frac{x \cos x - (\cos x)(x)}{x^2} = -\frac{x \sin x - \cos x}{x^2}

(b) \(C'(5\pi) = -\frac{5\pi \cdot 0 - (-1)}{(5\pi)^2} = \frac{1}{25\pi^2} \approx 0.0001\)

It predicts that the increase in the unit cost is \(0.0001\) when \(x\) changes from \(5\pi\) to \(5\pi + 1\).
5. \(C\left(\frac{\pi}{2}\right) - C(5\pi) = 0 - \frac{-1}{5\pi} = 1 \approx 0.06366 \)

Should be to compare \(C'(5\pi) \) with slope of secant

\[
\frac{C\left(\frac{11\pi}{2}\right) - C(5\pi)}{\frac{11\pi}{2} - 5\pi} = \frac{\frac{1}{2\pi}}{\frac{3\pi}{2}} = \frac{2}{5\pi^2}
\]

\[
\text{Slope of secant} = \frac{\frac{1}{2\pi^2}}{\frac{3\pi}{2}} = 10.
\]

Slope of secant is 10 times steeper.

6. \(\lim_{x \to \infty} \frac{3 - x^2}{\sqrt{1 - 5x + 16x^4}} \)

\[
= \lim_{x \to \infty} \frac{(3 - x^2) \frac{1}{x^2}}{\sqrt{1 - 5x + 16x^4} \cdot \frac{1}{x^2}}
\]

\[
= \lim_{x \to \infty} \frac{\frac{3}{x^2} - 1}{\sqrt{\frac{1}{x^4} - \frac{5}{x^3} + 16}}
\]

\[
= \frac{0 - 1}{\sqrt{0 - 0 + 16}} = 2
\]

\[
= \frac{-1}{4}
\]

\[\frac{17}{17} = 1 \]

\[\text{Extra Credit} \]

\[
\lim_{\theta \to \infty} \frac{1 - \cos(5\theta)}{\sin\theta}
\]

\[
= \lim_{\theta \to \infty} \frac{1 - \cos(5\theta)}{\sin\theta} \cdot \frac{1 + \cos(5\theta)}{1 + \cos(5\theta)}
\]

\[
= \lim_{\theta \to 0} \frac{\sin^2(5\theta)}{\sin\theta} \cdot \frac{1 + \cos(5\theta)}{1 + \cos(5\theta)}
\]

\[
= \lim_{\theta \to 0} \frac{5 \sin(5\theta)}{\sin(5\theta)} \cdot \frac{1}{1 + \cos(5\theta)}
\]

\[
= \frac{5 \cdot \frac{1}{2}}{\frac{1}{2}} = \frac{5}{1} = 5
\]

Another way

\[
\lim_{t \to 0} \frac{\frac{1 - \cos(t)}{\sin(t)}}{5}
\]

\[
= \lim_{t \to 0} \frac{\frac{1 - \cos(t)}{\sin(t)}}{5}
\]

\[
= \frac{1}{5} \cdot 1 = \frac{1}{5} = \frac{1}{5}
\]