1.) Find the following limits:

(a) \(\lim_{x \to \infty} \frac{\sqrt{x^2 - 9}}{x - 3} \)
(b) \(\lim_{x \to 0} \frac{2\sin x - x}{x} \)
(c) \(\lim_{x \to \infty} \frac{x}{x - \frac{y}{x}} \)
(d) \(\lim_{y \to 0} \frac{\sin^6 y}{6y^6} \)

(d) \(\lim_{w \to 0} \frac{\sqrt{2 + 3w} - \sqrt{2 - 3w}}{w} \)
(e) \(\lim_{x \to 1} \frac{2|x - 1|}{x - 1} \)
(f) \(\lim_{x \to \infty} \frac{1 - x}{x - 2} \)

2.) Let

\[f(x) = \frac{x^2 + 6x - 16}{x - 2} \]

Find the value \(f(2) \) that would make \(f \) continuous at 2.

3.) Let \(f(x) = \sqrt{x} \). Show that the line \(4y = x + 4 \) is tangent to the graph of \(f \). What is the point of tangency?

4.) Compute the derivative of the following:

(a) \(y = x^2 \sin \frac{1}{x} \)
(b) \(y = (3x - 5)^{5/9} \)
(c) \(\int_{2}^{5x^2} t \cos(3t) \, dt \)

5.) Find the equation of the line tangent to the graph of \(f(x) = x\sqrt{x - 1} \) at the point (5, 10).

6.) Find an equation of the line tangent to the graph of the equation \(xy^3 - x^2 = y^2 + xy - 5 \) at the point (2, 1).

7.) A shadow in the shape of an equilateral triangle is growing 9 square inches per minute. At what rate does the height of the triangle grow when the area is \(\sqrt{3} \) square inches.

8.) Suppose the velocity of an object is given by \(v(t) = \frac{1}{4} t^2 + \sin t \) for \(0 \leq t \leq \frac{\pi}{2} \). For what value of \(t \) in \([0, \frac{\pi}{2}]\) is the acceleration maximal?

9.) Use a linear approximation to approximate \(\sqrt{31} \).

10.) Use Newton's Method to approximate a \(\sqrt{31} \).

11.) Find the domain, intercepts, local extrema, inflection points and asymptotes of the following functions. Then sketch their graphs.
12.) Find the maximum value and the minimum value of \(f(x) = -(x^2 - 12x) \) on the interval \([1, 3]\).

13.) Find the area of the largest rectangle that can be drawn with its base on the \(x \) - axis and with two vertices on the graph \(y = \frac{8}{x^2 + 4} \).

14.) Let \(f(x) = x^3 + 8 \) and let \(P = \{-2, -1, 0, 1, 2\} \) be a partition of the interval \([-2, 2]\). Find the upper sum \(A_{CP} \) and the lower sum \(A_{IP} \).

15.) Evaluate the following integrals:
 (a) \(\int_{1}^{32} \frac{4}{\sqrt{x^3}} dx \)
 (b) \(\int_{0}^{\pi/4} \frac{\sec x \tan x}{(4 + \sec x)^2} dx \)
 (c) \(\int_{1}^{4} |x - 2| dx \)

16.) Find the area of the region bounded by the graphs \(f(x) = x^3 - 3x + 2 \) and \(g(x) = x + 2 \).

17.) Find the volume of the solid obtained by revolving the region between \(f(x) = \cos x \) and \(g(x) = \sec x \) on the interval \([0, \frac{\pi}{4}]\) around the \(x \) - axis. Hint : \(\cos^2 x = \frac{1}{2} + \frac{1}{2}\cos 2x \)

18.) Find the length of the curve \(f(x) = \frac{2}{3}x^{3/2} \) on the interval \([0, 3]\).

19.) A cylindrical well 20 feet deep and 3 feet in radius is dug. Assuming that the soil weighs 150 pounds per cubic foot, calculate the work \(W \) required to raise the soil to ground level.

20.) Use Trapezoidal Rule and Simpson's Rule to approximate \(\int_{1}^{2} \frac{1}{x} dx \) using 10 subintervals.

NOTE THAT PROBLEMS ON THE EXAM ARE NOT LIMITED TO THESE.
Solutions

1.) Find the following limits:

(a) \(\lim_{x \to \infty} \frac{\sqrt{x^2 - 9}}{x - 3} = 1 \)
(b) \(\lim_{x \to 0} \frac{2\sin x - x}{x} = 1 \)
(c) \(\lim_{x \to \infty} \frac{x}{x^2} = 1 \)
(d) \(\lim_{y \to 0} \frac{\sin^6 y}{6y^6} = \frac{1}{6} \)

(d) \(\lim_{w \to 0} \frac{\sqrt{2 + 3w} - \sqrt{2 - 3w}}{w} = \frac{3\sqrt{2}}{2} \)
(e) \(\lim_{x \to 1} \frac{2|x - 1|}{x - 1} = -2 \)
(f) \(\lim_{x \to 2^+} \frac{1 - x}{x - 2} = -\infty \)

2.) \(f(x) = \frac{x^2 + 6x - 16}{x - 2} = \frac{(x - 2)(x + 8)}{x - 2} = x + 8 \), for \(x \neq 2 \)

\(\lim_{x \to 2} f(x) = 10 \). Thus \(f(2) \) must equal 10 for \(f \) to be continuous at \(x = 2 \).

3.) The slope of the line is \(\frac{1}{4} \). Therefore \(f'(x) = \frac{1}{2\sqrt{x}} = \frac{1}{4} \), when \(x = 4 \). So the point of tangency is \((4, 2) \).

4.) Compute the derivative of the following:

(a) \(\frac{dy}{dx} = 2x \sin \frac{1}{x} - \cos \frac{1}{x} \)
(b) \(\frac{dy}{dx} = \frac{15}{9} (3x - 5)^{-4/9} \)
(c) \(\frac{d}{dx} \int_2^{5x^2} t \cos(3t) \, dt = 50x^3 \cos(15x^2) \)

5.) \(f(x) = x \sqrt{x - 1} \) So \(f'(x) = \frac{x}{2\sqrt{x - 1}} + \sqrt{x - 1} \).
\(f'(5) = \frac{13}{4} \). Thus the equation of the tangent line is \(y - 10 = \frac{13}{4} (x - 5) \).

6.) \(y - 1 = 2(x - 2) \).

7.) In an equilateral triangle with base \(b \), the height \(h = \frac{\sqrt{3}}{2} b \). Thus \(b = \frac{2}{\sqrt{3}} h \). So
\(A = \frac{1}{2} bh = \frac{b^2}{\sqrt{3}} \). So \(\frac{dA}{dt} = \frac{2}{\sqrt{3}} h \frac{dh}{dt} \). So we want \(\frac{dh}{dt} \) when \(A = \sqrt{3} \). Note that the height \(h = \sqrt{3} \) at that area. Thus \(\frac{dh}{dt} = \frac{9}{2} \).

8.) \(t = \frac{\pi}{6} \)
9.) \(\sqrt{31} \approx \sqrt{32} + \frac{1}{5(32)}(31 - 32) = \frac{159}{80} \)

10.) \(\frac{159}{80} \)

11.) Find the domain, intercepts, local extrema, inflection points and asymptotes of the following functions. Then sketch their graphs.

(a) \(f(x) = \frac{5x}{x^2 - 1} \)

(b) \(f(x) = \frac{8}{x^2 + 4} \)
12.) Maximum is $f(3) = 27$ and the minimum is $f(1) = 11$.

13.) $x = 2$ will yield the maximum area.

14.) The upper sum is $A_{CP} = f(-1) + f(0) + f(1) + f(2)$ and the lower sum is $A_{IP} = f(-2) + f(-1) + f(0) + f(1)$.

15.) Evaluate the following integrals:
(a) $\int_{1}^{32} \frac{4}{\sqrt[3]{x}} \, dx = 30$
(b) $\int_{0}^{\pi/4} \frac{\sec x \tan x}{(4 + \sec x)^2} \, dx = \frac{1}{5} - \frac{1}{4 + \sqrt{2}}$
(c) $\int_{1}^{4} |x - 2| \, dx = \frac{5}{2}$

16.) 8

17.) $\frac{3}{4} - \frac{\pi}{8}$

18.) $\frac{14}{3}$

19.) $W = \int_{-20}^{0} 150(0 - x) \cdot 9 \pi \, dx$

20.) $T_{10} \approx .69377 \quad S_{10} \approx 0.69315$