INVERSE FUNCTIONS

1.) Prove algebraically that \(f(x) = \frac{3x - 4}{5 - 6x} \) is one to one.

2.) Let \(g(x) = x^2 - 3 \).

 (a) Prove \(g \) is not one to one.

 (b) What is the smallest value for \(a \) such that \(g \) has an inverse on \([a, \infty)\)?

 (c) Now let \(g \) be defined on the interval obtained in part (b). Find the inverse of \(g \) and verify it using composition.
3.) Show that the graph of f^{-1} is the reflection of the graph of f through the line $y = x$ by verifying the following conditions:

i. If $P(a, b)$ is on the graph of f, then $Q(b, a)$ is on the graph of f^{-1}.

ii. The midpoint of line segment PQ is on the line $y = x$.

iii. The line PQ is perpendicular to the line $y = x$.

4.) What condition(s) need to be placed on constants a, b or c so that $f(x) = \frac{ax + b}{cx - a}$ is its own inverse? In other words, $(f \circ f)(x) = x$.