Dr. Nestler - Math 2 - 3.2 - Real Zeros of Polynomials

Theorem. If \(f(x) \) is a polynomial and \(c \) is a real number, then the following statements are equivalent, meaning that either they are all true or they are all false:

1. \(c \) is a zero of \(f \), meaning \(f(c) = 0 \).
2. \(x - c \) is a factor of \(f(x) \), meaning the remainder of \(f(x) \) divided by \(x - c \) is zero.
3. \(c \) is an \(x \)-intercept of the graph of \(f(x) \), meaning the point \((c, 0)\) is on the graph of \(f \).

Example: \(f(x) = x^2 + x - 6 = (x + 3)(x - 2) \).

- \(x + 3 \) is a factor of \(f(x) \) \(\Leftrightarrow \) \(f(-3) = 0 \) \(\Leftrightarrow \) \(-3\) is an \(x \)-intercept of the graph of \(f(x) \).
- \(x - 2 \) is a factor of \(f(x) \) \(\Leftrightarrow \) \(f(2) = 0 \) \(\Leftrightarrow \) \(2 \) is an \(x \)-intercept of the graph of \(f(x) \).

Since a polynomial of degree \(n \) has at most \(n \) linear factors, it has at most \(n \) real zeros.

This means that the number of real zeros must be equal to or less than its degree.

Examples: \(f(x) = \frac{7}{8}x(x - 1.23)(2x + 5) \)

\[g(x) = -4(x - \frac{4}{5})^{13} \]

\[h(x) = x^2 + 9 \]
Example: Find the quotient and remainder of

\[f(x) = 3x^5 + 5x^4 - 4x^3 + 7x + 3 \text{ divided by } x + 2. \]

Synthetic division:

Example: Is the number 1 a zero of \(f(x) = 2x^3 - x^2 + 2x - 3? \)

1 is a zero of \(f(x) \iff x - 1 \) is a factor of \(f(x) \iff \text{remainder of } \frac{f(x)}{x-1} \) is zero

Rational Zeros Theorem. Suppose \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \)

is a polynomial of degree \(n \geq 1 \) where the coefficients are all integers and the constant term \(a_0 \) is not zero. If \(\frac{p}{q} \) is a reduced rational zero of \(f \), then \(p \) is a factor of the constant term \(a_0 \), and \(q \) is a factor of the leading coefficient \(a_n \).

Idea of Proof: Outlined in 3.2 #118. A complete proof requires what is called mathematical induction, a topic in section 11.4 that we will study at the end of the course.