If we take \(dx = \Delta x = x - a \) and \(dy = \Delta y = y - b \) in Equation 10, then the differential of \(z \) is
\[
dz = f_x(a, b)(x - a) + f_y(a, b)(y - b)
\]
So, in the notation of differentials, the linear approximation (4) can be written as
\[
f(x, y) \approx f(a, b) + dz
\]
Figure 7 is the three-dimensional counterpart of Figure 6 and shows the geometric interpretation of the differential \(dz \) and the increment \(\Delta z \): \(dz \) represents the change in height of the tangent plane, whereas \(\Delta z \) represents the change in height of the surface \(z = f(x, y) \) when \((x, y) \) changes from \((a, b) \) to \((a + \Delta x, b + \Delta y) \).

EXAMPLE 4

(a) If \(z = f(x, y) = x^2 + 3xy - y^2 \), find the differential \(dz \).

(b) If \(x \) changes from 2 to 2.05 and \(y \) changes from 3 to 2.96, compare the values of \(\Delta z \) and \(dz \).

SOLUTION

(a) Definition 10 gives
\[
dz = \frac{\partial z}{\partial x} \, dx + \frac{\partial z}{\partial y} \, dy = (2x + 3y) \, dx + (3x - 2y) \, dy
\]

(b) Putting \(x = 2, \, dx = \Delta x = 0.05, \, y = 3, \, \text{and} \, dy = \Delta y = -0.04 \), we get
\[
dz = [2(2) + 3(3)]0.05 + [3(2) - 2(3)](-0.04)
\]
\[
= 0.65
\]
The increment of \(z \) is
\[
\Delta z = f(2.05, 2.96) - f(2, 3)
\]
\[
= [(2.05)^2 + 3(2.05)(2.96) - (2.96)^2] - [2^2 + 3(2)(3) - 3^2]
\]
\[
= 0.6449
\]
Notice that \(\Delta z \approx dz \) but \(dz \) is easier to compute.

EXAMPLE 5 The base radius and height of a right circular cone are measured as 10 cm and 25 cm, respectively, with a possible error in measurement of as much as 0.1 cm.