SK_1 of Affine Curves over Finite Fields

Andrew Nestler

Department of Mathematics, University of Southern California,
1042 West 36th Place, Los Angeles, California, 90089-1113
E-mail: nestler@usc.edu

We show that $SK_1(X) = 0$ for every affine curve X over a finite field.

Key Words: K-theory, affine curves, finite fields

1. INTRODUCTION

Let k be a field and A a commutative, finitely generated k-algebra of Krull dimension one. Let $X = \text{Spec } A$ and call X an affine curve over k.

We briefly recall the definitions of K_1 and SK_1 of a commutative ring R. For each positive integer n, let $E_n(R)$ be the subgroup generated by elementary matrices (those with ones on the diagonal and at most one non-zero element elsewhere) in the general linear group $GL_n(R)$. There are natural inclusions $GL_n(R) \rightarrow GL_{n+1}(R)$ and $E_n(R) \rightarrow E_{n+1}(R)$. Let $GL(R)$ and $E(R)$ denote the direct limits of the GL_n and E_n, respectively. The group $K_1(R)$ is defined to be $GL(R)/E(R)$, which is the maximal abelian quotient of $GL(R)$, and $SK_1(R)$ is the kernel of the surjective determinant map $K_1(R) \rightarrow R^*$. If $X = \text{Spec } R$ is an affine curve, then $SK_1(X) = SK_1(R)$.

In the case $k = R$, $SK_1(X)$ can be very large; for example, if X is a node then $SK_1(X)$ is a real vector space of uncountably infinite dimension ([9, Prop. 121]). When k is a number field, it is conjectured that $SK_1(X)$ is torsion ([3, Remark 1.24], [14, p. 137]). Throughout this paper, k is a finite field. In this case it is known that $SK_1(X)$ is finite ([8, Kor. 3.23]), and trivial when X is smooth ([2, Cor. 4.3]) or a simple cusp ([9, p. 33]) or a union of affine lines ([7, Thm. 211], [13, Thm. 1]). Krusmeyer asked whether $SK_1(X) = 0$ always ([9, p. 32], [10, p. 80]). In this paper we prove this using excision.
For an affine curve X, $SK_1(X) = SK_1(X_{\text{red}})$, so we may assume below that our curves are reduced ([1, Cor. 9.2, p. 267]). Moreover, since SK_1 commutes with products, we may assume that our curves are connected.

If A is the coordinate ring of a reduced curve over a perfect field of
positive characteristic and B is the normalization of A (i.e. the integral
closure of A in its total quotient ring), and I is an ideal of B contained
in A, then excision holds ([6, Thm. 4.2]) and so there is a Mayer-Vietoris
exact sequence as follows:

$$K_2(B/I) \rightarrow K_1(A) \rightarrow K_1(B) \oplus K_1(A/I) \rightarrow K_1(B/I).$$

In fact further diagram chasing reveals that K_1 may be replaced with
SK_1, giving the following exact sequence:

$$K_2(B/I) \rightarrow SK_1(A) \rightarrow SK_1(B) \oplus SK_1(A/I) \rightarrow SK_1(B/I). \quad (1)$$

This sequence is the main tool used in the proofs below.

2. RESULTS

Lemma 2.1. Let X be an irreducible affine curve over a finite field. Then
$SK_1(X) = 0$.

Proof. Let B be the normalization of the integral domain A, and let
I be the conductor of the extension B/A. Since B is a finitely generated
A-module, I is not zero ([5, Cor. 13.13]). Write $I = \prod_{i=1}^r P_i^{a_i}$ for prime
ideals P_i of the Dedekind domain B, and $a_i \geq 1$ for each i.

As mentioned above, since excision holds, the cartesian square

$$
\begin{array}{ccc}
A & \rightarrow & B \\
\downarrow & & \downarrow \\
A/I & \rightarrow & B/I
\end{array}
$$

induces the Mayer-Vietoris exact sequence (1). Since $SK_1(B) = 0$, it
suffices to show that $SK_1(A/I) = 0$ and $K_2(B/I) = 0$.

If S/R is an integral ring extension and J is an ideal of S, then S/J is
integral over $R/(J \cap R)$. Since the conductor I is an ideal of both A and
B, B/I is integral over A/I. This gives $\dim (A/I) = \dim (B/I) = 0$, as
the quotient ring B/I is Artinian (here we use $I \neq 0$). The quotient ring
A/I is Noetherian and 0-dimensional, so Artinian. Thus A/I is semilocal,
so $SK_1(A/I) = 0$ ([1, Cor. 9.2, p. 267]).

Finally we show that $K_2(B/I) = 0$. The field $L_i = B/P_i$ is a quotient
of $k[x_1, \ldots, x_n]$, that is, a finitely generated k-algebra. Hence L_i
is a finite algebraic extension of k, and thus a finite field. Thus L_i is separable (in fact Galois) over k. Thus $B/P^{m_i}_i \simeq L_i[u]/u^m$ for positive integers m ([6, Lemma 2.2]), so in particular $B/P^{m_i}_i \simeq L_i[u]/u^{a_i}$. Now $B/I = B/P^{m_i}_i \simeq \prod_{i=1}^{r} B/P^{m_i}_i$, so $K_2(B/I) = 0$ ([4, Cor. 4.4(a)]).

Proposition 2.1. Let X be an affine curve over a finite field. Then $SK_1(X) = 0$.

Proof. We may assume that $X = \text{Spec } A$ is reducible. Let B be the normalization of A as before. Then B is a product $\prod_{i=1}^{r} B_i$ of Dedekind domains, with $r \geq 2$. The conductor I of B/A is an ideal of B, so I is a direct product $\prod_{i=1}^{r} I_i$ of ideals of the rings B_i.

The cartesian square

\[
\begin{array}{ccc}
A & \rightarrow & B = \prod_{i=1}^{r} B_i \\
\downarrow & & \downarrow \\
A/I & \rightarrow & B/I \simeq \prod_{i=1}^{r} B_i/I_i
\end{array}
\]

and excision give rise to a Mayer-Vietoris exact sequence (1) as before.

We again will show that the outer groups are trivial. First, Spec B is a smooth curve over a finite field so $SK_1(B) = 0$.

Next, we show that $SK_1(A/I) = 0$, using the inequality

$$\text{ht}(I) + \dim(A/I) \leq \dim(A) = 1$$

where $\text{ht}(I)$ is the height of the ideal I. If $\text{ht}(I) = 0$, then I would be contained in a minimal prime ideal of A. The Noetherian ring A has only finitely many minimal prime ideals, and they contain only 0 and the zero divisors of A ([11, Prop. 4.10, p. 26]). However, the conductor I contains a denominator of the total quotient ring of A, which is nonzero and not a zero divisor. Hence we must have $\text{ht}(I) = 1$ and so $\dim(A/I) = 0$, giving $SK_1(A/I) = 0$.

For each i, I_i is the image of I in B_i, so the surjection $A \rightarrow B_i$ sending I to I_i induces a surjection $A/I \rightarrow B_i/I_i$. Thus $\dim(B_i/I_i) \leq \dim(A/I) = 0$, so $\dim(B_i/I_i) = 0$ and thus $I_i \neq 0$. Each B_i/I_i is then Artinian, and thus so is B/I. Finally, $K_2(B/I) = \prod_{i=1}^{r} K_2(B_i/I_i)$, and each $K_2(B_i/I_i) = 0$, as in the proof of the Lemma.

Corollary 2.1. If $n \geq 3$ and A is a commutative 1-dimensional algebra over a finite field, then any matrix $M \in SL_n(A)$ is necessarily a product of elementary matrices.
Proof. This result follows from the Proposition and the stability results of Bass-Milnor-Serre ([2, Cor. 11.3].

ACKNOWLEDGMENT

The results in this paper will appear as part of my doctoral dissertation ([12]). I am very grateful to my advisor, Wayne Raskind, and to Sue Geller and Leslie Roberts for their encouragement and assistance. Thanks also to Charles Weibel.

REFERENCES