The following is an example of how you should present a proof of a limit using the limit definition.

Prove \(\lim_{{x \to 5}} (4x - 1) = 19 : \)

For every \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that if \(0 < |x - 5| < \delta \) then \(|4x - 1 - 19| < \varepsilon \).

Find \(\delta \), If \(|4x - 1 - 19| < \varepsilon \) then

\[|4x - 20| < \varepsilon \] then

\[|4(x - 5)| < \varepsilon \] then

\[|4||x - 5| < \varepsilon \text{ or } 4|x - 5| < \varepsilon \text{ * you may drop the absolute value around the 4 as we know the value is positive.} \]

then \(|x - 5| < \frac{\varepsilon}{4} \), so if we let \(\delta \leq \frac{\varepsilon}{4} \) then

If \(0 < |x - 5| < \frac{\varepsilon}{4} \) then

\[0 < 4|x - 5| < \varepsilon \] then

\[0 < |4(x - 5)| < \varepsilon \] then

\[0 < |4x - 1 - 19| < \varepsilon \text{ and the proof is complete.} \]