Finance Formulas

\[P = \text{principal or present value} \]
\[M = \text{maturity value} \]
\[A = \text{amount or future value} \]
\[I = \text{interest amount} \]
\[m = \text{number of compounding periods per year} \]
\[i = \text{annual interest rate} \]
\[t = \text{time (in years)} \]
\[R = \text{periodic annuity payment} \]

\[D = \text{discount amount} \]
\[d = \text{discount rate} \]
\[PR = \text{proceeds, amount to borrower} \]

\[\frac{r}{m} = i = \text{interest rate per period} \]
\[mt = n = \text{total number of compounding periods} \]

8.1 Simple Interest

\[I = Prt \]
\[A = P + I \]
\[= P + Prt \]
\[= P(1 + rt) \]

Simple Discount

\[D = Mdt \]
\[PR = M - D \]
\[= M - Mdt \]
\[= M(1 - dt) \]

8.2 Compound Interest

\[A = P(1 + i)^n \]

Effective Rate

\[x = (1 + i)^n - 1 \]

8.3 Ordinary Annuity (Future Value)

\[A = R \left[\frac{(1 + i)^n - 1}{i} \right] \]

Ordinary Annuity Payment

\[R = \frac{Ai}{(1 + i)^n - 1} \]

8.4 Present Value of an Annuity/Debt Payment

\[P = R \left[\frac{1 - (1 + i)^{-n}}{i} \right] \]

Balance of an Amortization

\[\text{Balance} = P(1 + i)^n - R \left[\frac{(1 + i)^n - 1}{i} \right] \]