1. Use the roster method to list the elements from the following set that are integers.
\{-6, -\frac{2}{3}, 0, 2\frac{1}{5}, \pi, \sqrt{25}, \sqrt{61}, 61, 75.9\}

2. Determine whether the following statement is true or false.
0.25 \notin \{x \mid x \text{ is an irrational number}\}

3. Simplify:
\[-3\{-8 - 2[-4 + 5 \cdot (3 - (-7))]\}\]

4. Evaluate:
\[\frac{bd - ac + 1}{c(a - b - d)}\]
when \(a = -3, \ b = -2, \ c = -5\) and \(d = -4\).

5. Identify the property that justifies
\[4x + 5x + 6x = (4 + 5 + 6)x\]

6. Medical researchers have found that the desirable heart rate, \(R\), in beats for minutes, for beneficial exercise is approximated by the following formula for women:
\[R = 143 - 0.65A. \text{ (Note: } A = \text{ woman's age in years)}\]
If the desirable heart rate for a women is 130 beats per minute, how old is she?

7. Simplify:
\[(\frac{4x^{-2}z}{9y^{-4}})^{-3}\]
and write your answer with positive exponents only.

8. Simplify:
\[\frac{x^{-5}y^{12}z^{-15}}{x^{-5}y^{-12}z^{-14}}\]
and write your answer with positive exponents only.

9. Write each numeral in the expression
\[(0.000175)(0.02)\]
in scientific notation and then do the operations. The answer should be written in scientific notation.

10. Solve the following equation for \(x\) and tell whether the equation is a conditional equation, an inconsistent equation or an identity.
\[3x - 3(2 - x) = 6(x - 1)\]

11. Solve the following equation for \(p\):
\[
\frac{p + 3}{5} - \frac{7}{4} = \frac{p - 5}{4} - \frac{3p + 12}{20}
\]

12. Solve \(P = L + \frac{S}{F}i\) for \(i\).

13. A rectangle is 20 meters longer than it is wide. If the perimeter of the rectangle is 240 meters, find its area.

14. After a 25% reduction, a jacket sold for $32.25. What was the jacket's price before the reduction?

15. In 1965, women made up 1.2% of the United States military. With an increase at the rate of 0.4% per year, in which year will women make up 17.2% of the military?

16. In which quadrant do points with a positive \(x\)-coordinate and a negative \(y\)-coordinate lie?

17. Find the slope of the line that passes through \((-9, -2)\) and \((-9, 2)\). Then indicate whether the line that passes through the points, rises from left to right, falls from left to right, is horizontal or is vertical.

18. Write the equation of a line that passes through points \((-2, 5)\) and \((-6, 11)\). Write your answer in slope-intercept form.

19. Write the equation of the line that passes through \((3, -5)\) and is parallel to the line whose equation is \(y = 4x + 7\).

20. Write the equation of the line passing through \((-3, -6)\) that is perpendicular to the graph of \(x - 5y = 10\). Write your answer in slope-intercept form.

21. Determine whether the graphs of \(3x + 2y = 18\) and \(2x - 3y = 24\) are parallel, perpendicular, or neither.

22. Determine whether the following relation is a function. Give the domain and range for the relation.
\[\{(3, 1), (3, 2), (6, 10), (5, 10), (7, 10)\}\]
23. Is \(y = x^2 + 2x + 1 \) a function? Create a table of values using the integers \(-2\) through 2 for \(x \) to determine your answer.

24. Find the domain of \(y = \frac{1}{2x-5} \).

25. Find the domain of \(f + g \) given that \(f(x) = \frac{7x}{x+6} \) and \(g(x) = -\frac{3}{x-1} \).

26. If \(f(x) = -x^2 - 2x - 3 \), find \(f(-4) - f(-2) \).

27. If \(g(x) = -7x - 3 \), find \(g(a + 4) \).

28. If \(f(x) = 4x - 2 \) and \(g(x) = -7x - 5 \), find \((f - g)(x)\) and then \((f - g)(-3)\).

29. The function \(V(t) = 3.6t + 140 \) models the number of Super Bowl viewers, in millions, \(t \) years after 1995. Find \(V(10) \). What is the slope of the model? Describe what this means in terms of rate of change.

30. Explain why the vertical line test is used to determine which graphs represents functions and which do not.

31. Graph the linear function \(-3x - 2y = 12\) by finding the \(x\) - and \(y\) -intercepts. Make sure to point out the \(x\) - and \(y\) -intercepts and the insurance point. Make a table of values next to the graph.

32. Graph \(f(x) = -\frac{5}{2}x + 1 \) using the slope and the \(y\) -intercept. Point out the \(y\) -intercept on your graph, and then show how you found the second point using the fact that \(\text{slope} = \frac{\text{rise}}{\text{run}} \).

33. Graph \(f(x) = 4 \).

34. Graph \(f(x) = x^2 \) using the integers \(-2\) through 2 in the table of values. Graph \(g(x) = x^2 - 2 \) using the same values for \(x \) in the second table of values. Describe how the graph of \(g \) is related to the graph of \(f \).

35. Graph \(f(x) = |x| \) using the integers \(-2\) through 2 in the table of values. Graph \(g(x) = |x| + 1 \) using the same values for \(x \) in the second table of values. Describe how the graph of \(g \) is related to the graph of \(f \).

And now so you can check your work!!! --- the Solutions to the above 35 problems.

1. In the set \{-6, \frac{-2}{3}, 0, 2\frac{1}{3}, \pi, \sqrt{25}, \sqrt{61}, 61, 75.9\}\ the integers are those numbers that are either negative, 0, or positive and contain no fraction or decimal portion. The integers are \(-6, 0, \sqrt{25}\) because it equals 5 and 61. Thus, the solution set using the roster method is \{-6, 0, \sqrt{25}, 61\}.

2. True. 0.25 is a rational number because it can be written in the form \(\frac{a}{b} \) as \(\frac{25}{100} \). Thus, it is not an element in the set of irrational numbers.

3. \(-3\{-8 - 2[-4 + 5 \cdot (3 - (-7))]\} = -3\{-8 - 2[-4 + 5 \cdot (-10)]\} = -3\{-8 - 2[-4 + 50]\} = -3\{-8 - 2(46)\} = -3\{-8 - 92\} = -3\{-8 + (-92)\} = -3 \cdot (-100) = 300\)

4. To evaluate \(\frac{bd - ac + 1}{c(a - b - d)} \), substitute into the expression as follows: \(a = -3, b = -2, c = -5 \) and \(d = -4 \).

\[
\frac{bd - ac + 1}{c(a - b - d)} = \frac{(-2)(-4) - (-3)(-5) + 1}{-5(-3 - (-2) - (-4))} = \frac{-8 - 15 + 1}{-5(-3 + (+2) + (+4))} = \frac{8 + (-15) + 1}{-5 \cdot 3} = \frac{-5}{-15} = \frac{2}{5}\]
5. The property that justifies
\[4x + 5x + 6x = (4 + 5 + 6)x\]
is the distributive property.

6. \[R = 143 - 0.65A \]
\[130 = 143 - 0.65A \]
\[-13 = -0.65A \]
\[-13 \div -0.65 = \frac{-0.65A}{20} = A \]

A 20-year-old woman needs to reach the desirable rate of 130 beats per minute for the maximum benefit when exercising.

7. \[\left(\frac{4x^2z}{9y^4} \right)^{-3} = \left(\frac{9y^4}{4x^2z} \right)^3 \]
\[= \frac{9^3y^{12}}{4^3x^{-6}z^3} \]
\[= \frac{9^3x^6}{4^3y^{12}z^3} \]
\[= \frac{29x^6}{64y^{12}z^3} \]

8. \[\frac{x^{-5}y^{12}z^{-15}}{x^{-5}y^{-12}z^{-14}} = \frac{x^5y^{12}y^{14}z^{14-15}}{x^5z^{15}} \]
\[= x^{5-5}y^{12+12}z^{14-15} \]
\[= x^{0}y^{24}z^{-1} \]
\[= 1 \cdot y^{24} \cdot \frac{1}{z} \]
\[= \frac{y^{24}}{z} \]

9. \[\frac{(0.000175)(0.02)}{7,000,000,000} \]
\[= \frac{(1.75 \times 10^{-4}) \cdot (2 \times 10^{-2})}{7 \times 10^9} \]
\[= \frac{(1.75 \times 2) \times (10^{-4} \times 10^{-2})}{7 \times 10^9} \]
\[= \frac{3.5 \times 10^{-6}}{7 \times 10^9} \]

\[= \frac{3.5 \times 10^{-6}}{7} \times \frac{10^9}{10^9} \]
\[= 0.5 \times 10^{-6} \to 10^{-9} \]
\[= 0.5 \times 10^{-9}\]
\[= 0.5 \times 10^{-6+(9)} \]
\[= 0.5 \times 10^{-15} \]
This expression is in pseudo-scientific notation.

\[= 5 \times 10^{-1} \times 10^{-15} \]
Convert 0.5 to scientific notation!!!

\[= 5 \times 10^{-16} \]
Use the rule \(x^m \cdot x^n = x^{m+n}\).

10. \[3x - 3(2 - x) = 6(x - 1) \]
\[3x - 6 + 3x = 6x - 6 \]
\[6x - 6 = 6x - 6 \]
The original equation is an identity.

11. \[\frac{p + 3}{5} - \frac{7}{4} = \frac{p - 5}{4} - \frac{3p + 12}{20} \]

Enclose binomials in the numerator in parentheses.

\[\frac{(p + 3)}{5} - \frac{7}{4} = \frac{(p - 5)}{4} - \frac{(3p + 12)}{20} \]
\[\frac{20(p + 3)}{5} - \frac{20 \cdot 7}{4} = \frac{20(p - 5)}{4} - \frac{20(3p + 12)}{20} \]
\[4(p + 3) - 5 \cdot 7 = 5(p - 5) - 1(3p + 12) \]
\[4p + 12 - 35 = 5p - 25 - 3p - 12 \]
\[4p - 23 = 2p - 37 \]
\[4p - 2p = -37 + 23 \]
\[2p = -14 \]
\[p = -7 \]

12. \[P = L + \frac{S}{F}i \]
\[L + \frac{S}{F}i = P \]
\[L - L + \frac{S}{F}i = P - L \]
\[
\begin{align*}
\frac{S}{F} &= P - L \\
\frac{F}{S} &= \frac{F(P - L)}{S} \\
Si &= F(P - L) \\
\frac{Si}{S} &= \frac{F(P - L)}{S} \\
i &= \frac{F(P - L)}{S}
\end{align*}
\]

13. A rectangle is 20 meters longer than it is wide. If the perimeter of the rectangle is 240 meters, find its area.
1) Let \(x = \text{the width}\)
2) Then \(x + 20 = \text{the length}\)
3) \(2w + 2l = P\)
 \[2x + 2(x + 20) = 240\]
4) \[2x + 2x + 40 = 240\]
 \[4x + 40 = 240\]
 \[4x = 200\]
 \[x = 50\]
5) Check: \(2x + 2(x + 20) = 240\)
 \[2 \cdot 50 + 2(50 + 20) = 240\]
 \[\frac{100 + 2(70)}{2} = 240\]
 \[100 + 140 = 240\]
 \[240 = 240\]

The dimensions are 50 meters by 70 meters; so if we use the area formula of a rectangle then \(A = w \cdot l = 50 \cdot 70 = 3,500\) square meters!

14. After a 25% reduction, a jacket sold for $32.25. What was the jacket's price before the reduction?
1) Let \(x = \text{jacket's price before the reduction}\)
2) Then \(0.25x = \text{amount of reduction or discount}\)
3) \(\text{jacket's price} - \text{discount} = \text{sale price}\)
 \[1.00x - 0.25x = 32.25\]
4) \[0.75x = 32.25\]
 \[(100)0.75x = (100)32.25\]
 \[75x = 3,225\]
 \[\frac{75x}{75} = \frac{3,225}{75}\]
 \[x = 43\]
5) Check: \(1.00 \cdot 43 - 0.25(43) = 32.25\)

\[43 - 10.75 = 32.25\]
\[\frac{32.75}{32.25} = 32.75\]

The jacket cost $43 before the price reduction.

15. In 1965, women made up 1.2% of the United States military. With an increase at the rate of 0.4% per year, in which year will women make up 17.2% of the military?
1) Let \(x = \text{the number of years after 1965 when there will be 17.2\% women in the military}\)
2) \(1.2\% + \% \text{ increase} \cdot \# \text{of years} = 17.2\%\)
 \[0.012 + 0.004x = 0.172\]
3) \[1000 \cdot 0.012 + 1000 \cdot 0.004x = 1000 \cdot 0.172\]
 \[12 + 4x = 172\]
 \[4x = 172 - 12\]
 \[4x = 160\]
 \[x = 40\]
5) Check: \(0.012 + 0.160 = 0.172\)
 \[0.172 = 0.172\]

In 2005, 40 years after 1965, the military will be composed of 17.2\% women.

16. If the \(x\)-coordinate is positive and the \(y\)-coordinate is negative, then the point lies in the 4th quadrant.

17. Point #1 is \((x_1, y_1) = (-9, -2)\)
and point #2 is \((x_2, y_2) = (-9, 2)\).
Use the slope formula.
\[m = \frac{y_2 - y_1}{x_2 - x_1}\]
\[m = \frac{2 - (-2)}{-9 - (-9)}\]
\[m = \frac{4}{0} \text{ which is undefined.}\]
Thus, the line is vertical.

18. Write the equation of a line that passes through points \((-2, 5)\) and \((-6, 11)\). Write your answer in slope \(y\)-intercept form.

First find the slope.
Point #1 is \((x_1, y_1) = (-2, 5)\)
and point #2 is \((x_2, y_2) = (-6, 11)\).
\[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{11 - 5}{-6 - (-2)} = \frac{6}{-6 + 2} = \frac{6}{-4} = -\frac{3}{2} \]

Then use point slope form and insert either point and the slope into the formula.

\[y - y_1 = m(x - x_1) \]
\[y - 5 = -\frac{3}{2}(x + 2) \]
\[2y - 10 = -3(x + 2) \]
\[2y - 10 = -3x - 6 \]
\[2y = -3x + 4 \]
\[y = -\frac{3}{2}x + 2 \]

Check: Both points should make truthful mathematical statements when their coordinates are inserted into the equation of the line.

\[(-2, 5), (6, 11) \]
\[y = -\frac{3}{2}x + 2 \]
\[5 = 3 + 2\checkmark \]
\[11 = 9 + 2\checkmark \]

19. Write the equation of the line that passes through \((3, -5)\), and is parallel to the line whose equation is \(y = 4x + 7\).

The given line has a slope of 4. Thus, because the new line is parallel to the given line, it also must have a slope of 4. The new line passes through \((3, -5)\) so because we know 1 point and the slope of the new line, we can find the equation of the line using point-slope form.

\[y - y_1 = m(x - x_1) \]
\[y - (-5) = 4(x - 3) \]
\[y + 5 = 4x - 12 \]
\[y = 4x - 12 - 5 \]

\[y = 4x - 17 \]

20. Write the equation of the line passing through \((-3, -6)\) that is perpendicular to the graph of \(x - 5y = 10\). Write your answer in slope y-intercept form.

First put the given line in slope y-intercept form.

\[x - 5y = 10 \]
\[-5y = -x + 10 \]
\[y = \frac{1}{5}x - 2 \]

Then determine the slope of the line that is perpendicular to the given line. Because the slopes of perpendicular lines are negative reciprocals, we need to find the negative reciprocal of \(\frac{1}{5}\). The negative reciprocal of \(\frac{1}{5}\) is \(-5\) or \(-\frac{1}{5}\).

Lastly use the slope \((-5)\) and the given point \((-3, -6)\) in the point-slope form.

\[y - y_1 = m(x - x_1) \]
\[y - (-6) = -5(x - (-3)) \]
\[y + 6 = -5(x + 3) \]
\[y + 6 = -5x - 15 \]
\[y = -5x - 21 \]

21. Determine whether the graphs of \(3x + 2y = 18\) and \(2x - 3y = 24\) are parallel, perpendicular, or neither.

Put the two equations that are in standard form into slope y-intercept form.

\[3x + 2y = 18 \]
\[2y = -3x + 18 \]
\[y = -\frac{3}{2}x + 9 \]
\[2x - 3y = 24 \]
\[-3y = -2x + 24 \]
\[y = \frac{2}{3}x + 8 \]
\[y = \frac{2}{3}x - 8 \]

Because the slopes are negative reciprocals and multiply to make \(-1\), the two lines are perpendicular. \(\frac{-3}{2} \cdot \frac{2}{3} = -1 \).

22. The relation \(\{(3, 1), (3, 2), (6, 10), (5, 10), (7, 10)\} \) is not a function because the \(x \)-value 3 has two \(y \)-values associated with it, 1 and 2. The domain is \(\{3, 5, 6, 7\} \) and the range is \(\{1, 2, 10\} \).

23. Is \(y = x^2 + 2x + 1 \) a function? Create a table of values to determine your answer.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-3)</th>
<th>(-2)</th>
<th>(-1)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
</tr>
</tbody>
</table>

In this horizontal table of values, never once were there 2 \(y \)-values associated with any 1 \(x \)-value. Therefore, we conclude that \(y = x^2 + 2x + 1 \) is a function. ■

24. Find the domain of \(y = \frac{1}{2x-5} \).

Set \(2x - 5 = 0 \) to find the excluded value.

\[2x = 5 \]
\[x = \frac{5}{2} \]

The domain = \(\{x|x \text{ is a real number and } x \neq \frac{5}{2}\} \).

25. Find the domain of \(f + g \) given that
\[f(x) = \frac{7x}{x+6} \text{ and } g(x) = \frac{4}{x-1}. \]

\[f(x) + g(x) = \frac{7x}{x+6} + \frac{4}{x-1} \]

The domain of \(f + g = \{x|x \text{ is a real number and } x \neq -6 \text{ and } x \neq 1\}. ■

26. Let \(f(x) = -x^2 - 2x - 3 \).
Find \(f(-4) - f(-2) \).

\[A) \quad f(-4) = -(-4)^2 - 2(-4) - 3 \]
\[= -16 + 8 + (-3) \]
\[= -11 \]

\[B) \quad f(-2) = -(-2)^2 - 2(-2) - 3 \]
\[= -4 + 4 - 3 \]
\[= -3 \]

\[C) \quad f(-4) - f(-2) = -11 - (-3) \]
\[= -11 + 3 \]
\[= -8 \] ■

27. If \(g(x) = -7x - 3 \), find \(g(a + 4) \).
\[g(x) = -7x - 3 \]
\[g(a + 4) = -7(a + 4) - 3 \]
\[= -7a - 28 - 3 \]
\[= -7a - 31 ■ \]

28. If \(f(x) = 4x - 2 \) and \(g(x) = -7x - 5 \), find \((f - g)(x) \) and then \((f - g)(-3) \).

\[\text{Part I} \]
\[f(x) - g(x) = (4x - 2) - (-7x - 5) \]
\[= (4x - 2) + 7x + 5 \]
\[= 11x + 3 \]

\[\text{Part II} \]
\[(f - g)(-3) = 11(-3) + 3 \]
\[= -33 + 3 \]
\[= -30 ■ \]

29. The function \(V(t) = 3.6t + 140 \) models the number of Super Bowl viewers, in millions, \(t \) years after 1995. Find \(V(10) \). What is the slope of the model? Describe what this means in terms of rate of change.

\[V(t) = 3.6t + 140 \]
\[V(10) = 3.6 \cdot 10 + 140 \]
\[= 36 + 140 \]

\[It \text{ is thus anticipated that 176 million people will watch the Super Bowl 10 years after 1995 in 2005.} \]

The slope is 3.6. This indicates that the number of Super Bowl viewers is increasing at the rate of 3.6 million per year. ■

30. Explain why the vertical line test is used to determine which graphs represents functions and which do not.
If a vertical line can be drawn that crosses the graph in more than one point, then the graph does not represent a function. Consider $x = y^2$ and create a table of values.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

If one plots the points, the graph is of a parabola which opens to the right. But it is not a function because it does not pass the vertical line test. Another way to know it is not a function is that for the x-value 4, there are two y-values associated with it, -2 and 2. Or for the x-value 1, there are two y-values associated with it, -1 and 1. By definition, a function has only 1 y-value associated with any 1 given x-value.

For problems 31-35 I will provide the table of values and let you do the graphing!

31. Graph $-3x - 2y = 12$ by finding the x- and y-intercepts.

Using this method, let $x = 0$ and $y = 0$ and $x = -2$ in the table of values.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0</td>
<td>-6</td>
</tr>
</tbody>
</table>

On your graph, make sure to point out that $(0, -6)$ is the y-intercept, $(-4, 0)$ is the x-intercept and $(−2, −3)$ is the insurance point.

32. Graph $y = \frac{-5}{2}x + 1$ using the slope and the y-intercept.

Begin by plotting the y-intercept $(0, 1)$. Then draw a horizontal line a distance of 2 units to the right (the run) and then draw a vertical line a distance of 5 units down (the rise). Then plot the second point $(2, -4)$ and graph the line connecting the two points.

33. Graph $f(x) = 4$.

$f(x) = 4$ is the same as saying $y = 4$. Make a table of values where y is always 4 and x can be any value.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

The graph is a horizontal line 4 units above the x-axis and also parallel to the x-axis.

34. Graph $f(x) = x^2$ using the integers $−2$ through 2 in the table of values. Graph $g(x) = x^2 - 2$ using the same values for x in the second table of values. Describe how the graph of g is related to the graph of f.

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

$y = x^2$

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>2</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>2</td>
</tr>
</tbody>
</table>

The graph of $f(x) = x^2$ is a parabola with vertex at $(0, 0)$. The graph of $g(x) = x^2 - 2$ is a parabola with vertex at $(0, -2)$. The graph of g is shifted vertically down two units from f.

35. Graph $f(x) = |x|$ using the integers $−2$ through 2 in the table of values. Graph $g(x) = |x| + 1$ using the same values for x in the second table of values. Describe how the graph of g is related to the graph of f.

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

$y = |x|$

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

The graph of $f(x) = |x|$ is a V opening upward with a vertex of $(0, 0)$. The graph of $g(x) = |x| + 1$ is a V opening upward with a vertex of $(0, 1)$. The graph of g is shifted vertically up 1 unit from the graph of f.