ACS CHEM 12 EXAM:

- Exam covers concepts and problems from Chapters 15-26 of the textbook.
- 70 Questions, Multiple Choice (a-d), 2-hour time limit.
- Scantron, #2 pencil, and non-programmable calculator required.
- No cheat sheets permitted.
- New seating chart. Scratch paper provided.

Memorize:

- Nomenclature rules
- Common oxidation states (charges) of ions (Al\(^{3+}\), Ca\(^{2+}\), Fe\(^{2+}\) or \(^{3+}\), SO\(_4\)\(^{2-}\), etc.)
- Solubility rules
- Electrolytes (identifying strong / weak / non)
- SI prefixes (milli, nano, micro, Mega, etc.)
- List of strong and weak acids

\[PV = nRT \]

\[pH = pK_a + \log \left(\frac{[\text{base}]_0}{[\text{acid}]_0} \right) \]

\[E_{cell} = E_{cell}^\circ - \left(\frac{RT}{v_eF} \right) \ln Q \]

\[\Delta G = \Delta H - T\Delta S \]

\[\Delta G^\circ = -RT \ln K \]

\[\Delta G = \Delta G^\circ + RT \ln Q \]

\[\Delta G = RT \ln \left(\frac{Q}{K} \right) \]

<table>
<thead>
<tr>
<th>Order</th>
<th>Rate law</th>
<th>Units of (k)</th>
<th>Dependence of [A] on time</th>
<th>Half-life</th>
<th>Test plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(rate = k[A])</td>
<td>(s^{-1})</td>
<td>(\ln [A] = \ln [A]_0 - kt)</td>
<td>(t_{1/2} = \frac{0.693}{k})</td>
<td>(\ln [A]) vs. (t)</td>
</tr>
<tr>
<td>2</td>
<td>(rate = k[A]^2)</td>
<td>(M^{-1}s^{-1})</td>
<td>(\frac{1}{[A]} = \frac{1}{[A]_0} + kt)</td>
<td>(t_{1/2} = \frac{1}{k[A]_0})</td>
<td>(\frac{1}{[A]}) vs. (t)</td>
</tr>
</tbody>
</table>
Review:

Stuff from Ch 15 on intermolecular forces and unit cells (from Chem 11)

Phase diagrams

Identifying zero, 1st and 2nd order reactions from data & plots.

Chemical mechanisms.

Nuclear equations.

Method of initial rates.

Identifying acids & bases & neutral species.

Definitions of Arrhenius, Bronsted-Lowry, and Lewis Acids.

Working with equilibrium constants, K_c, K_p, etc.

Solubility and K_{sp}

Entropy and Enthalpy concepts and calculations.

Delta G and Delta G standard.

Thermo concepts.

Identifying oxidizing and reducing agents.

Balancing redox equations.

Cell diagrams.

General equations from thermodynamics such as Hess' law & Calorimetry

pH & percent ionization calculations for species in solution.

Acid-base titrations for strong and weak species.

Le Chatelier's principle, Q and K.