1. A rectangle is constructed with its base on the x-axis and two of its vertices on the parabola \(Y = 16 - x^2 \).
 a. Draw a picture of this situation. (1 pt)
 b. Find a function that will give the area of the rectangle in terms of \(x \). (2 pts)

2. A box with a square base and a closed top is to be constructed so that its surface area is 108 inches\(^2\). (This is similar to one on the previous assignment, this time you start with surface area)
 a. Draw a picture of this situation. (1 pt)
 b. Find an equation for the volume of the box in terms \(x \), the length of one side of the square base. (2 pts)

3. A right circular cylinder is to be inscribed in a cone of altitude 12 centimeters and base radius 4 centimeters.
 a. Draw a picture of this situation. (1 pt)
 b. Find an expression for the volume of the cylinder in terms of \(h \) the height of the cylinder. (3 pts)

4. Given \(f(x) = \frac{-2x^2 + 14x - 24}{x^2 + 2x} \)
 a. Find the domain of this function. (1)
 b. Identify any x-intercepts or explain why none exist. (1)
 c. Identify any y-intercepts or explain why none exist. (1)
 d. Identify any vertical asymptotes or holes in the graph. (1)
 e. Identify any horizontal or oblique asymptotes. (1)
 f. Construct a sign chart for this graph. (1)
 g. Sketch a graph of this function (2)
 h. Complete each of the following. (2)

 \[
 \begin{array}{ll}
 \text{as } x \to \infty & y \to \quad \quad \\
 \text{as } x \to 0^+ & y \to \quad \quad \\
 \text{as } x \to 0^- & y \to \quad \quad \\
 \text{as } x \to -2^+ & y \to \quad \quad \\
 \end{array}
 \]