1. Write the profit function if the cost function is $C(x) = 12x + \frac{8000}{x}$ and the revenue function is $R(x) = 30x$.
 (a) $42x - 8000$ (b) $42x + 8000$ (c) $18x - 8000$ (d) $18x + 8000$
 (e) $36x + 8000$

2. If the profit function is given by $P(x) = 5x - 44$, find the profit from selling 60 items,
 (a) 21 (b) 256 (c) 264 (d) 2860 (e) $13,200$

3. Find the future value of 1000 deposited at 8% annual interest and compounded quarterly for 3 years.
 (a) $1000(1.04)^3$ (b) $1000(1.08)^3$ (c) $1000(1.08)^{12}$ (d) $1000(1.02)^3$
 (e) $1000(1.02)^{12}$

4. Find the simple interest on 500 deposited for 6 months at 9% annual interest.
 (a) 925.93 (b) $11,111.11$ (c) 270 (d) 22.50 (e) 45

5. How much was borrowed for a loan that yielded $480 in simple interest over 2 years at 10% annual interest?
 (a) 2400 (b) 340 (c) 96 (d) 960 (e) 4800

6. Find the effective rate if an annual rate of 6% is compounded semi-annually.
 (a) 42.58% (b) 6.09% (c) 12.36% (d) 12.2% (e) 3.28%
7. Which formula would find the annual nominal rate, compounded monthly, for an effective rate of 7.763%?

(a) \(P(1.07763) = P(1 + \frac{r}{12}) \)
(b) \(P(1 + r) = P(1 + \frac{0.07763}{12}) \)

(c) \(P(0.07763) = P(1 + \frac{r}{12})^2 \)
(d) \(P(1.07763) = P(1 + \frac{r}{12})^2 \)

(e) \(P(1 + r) = P(1 + \frac{0.07763}{12})^2 \)

8. Find the amount in an ordinary annuity after $80 has been deposited monthly for 5 years at an annual rate of 6%.

(a) \(80 \left[\frac{(1.06^5 - 1)}{.06} \right] \)
(b) \(80 \left[\frac{(1.005)^{5} - 1}{.005} \right] \)
(c) \(80 \left[\frac{(1.05^{60} - 1)}{.05} \right] \)

(d) \(80 \left[\frac{(1.005)^{60} - 1}{.005} \right] \)
(e) \(80 \left[\frac{(1.06)^{12} - 1}{.06} \right] \)

9. At age seven, Betsy Boop starts saving $25 each month in an annuity that pays 8% annual interest. Find the value of her annuity the night before she is 17.

10. Spiderman deposited $5,000 into an account that compounded quarterly. The amount in the account accumulated to $6471.11 over 4 years. What was the annual interest rate?
1. \(P(x) = R(x) - C(x) \)
\[
= 30x - (12x + 2000) \\
= 18x - 2000
\]

2. \(P(60) = 5(60) - 44 \)
\[
= 300 - 44 \\
= 256
\]

3. \(A = P \left(1 + \frac{r}{m} \right)^{mt} \)
\[
= 1000 \left(1 + \frac{0.08}{4} \right)^{4.3} \\
= 1000 \left(1.02 \right)^{12.1}
\]

4. \(I = Prt \)
\[
= 500 \times 6 \times 0.09 \\
= 250 \times 0.09 \\
= 22.50
\]

5. \(A = R \left[\left(1 + \frac{i}{m} \right)^{n} - 1 \right] / i \)
\[
= 80 \left[\left(1.005 \right)^{60} - 1 \right] / 0.005 \\
= 80 \left[\left(1.005 \right)^{60} - 1 \right] / 0.005
\]

6. \(P(1 + \frac{r}{m}t) = P(1 + \frac{r}{m})^{mt} \)
\[
1 + x = (1 + \frac{0.08}{4})^{4.3} \\
1 + x = (1.02)^{12.1} \\
x = 0.0609
\]

7. \(P(1 + rt) = P(1 + \frac{r}{12})^{12t} \)
\[
P(1.0762) = P(1 + \frac{0.08}{12})^{12} \\
\]

8. \(i = \frac{rt}{m} = 0.06 \times \frac{6}{12} = 0.03 \)
\[
A = R \left[\left(1 + \frac{0.03}{12} \right)^{12} - 1 \right] / 0.03 \\
= 25 \left[\left(1 + \frac{0.03}{12} \right)^{12} - 1 \right] / 0.03 \\
A = 25 \left[\left(1 + \frac{0.03}{12} \right)^{12} - 1 \right] / 0.03
\]

9. \(A = \frac{Pm}{i} \left(1 + \frac{r}{12} \right)^{12} - 1 \)
\[
A = \frac{5000}{0.06} \left(1 + \frac{0.08}{12} \right)^{12} - 1 \\
A = \frac{5000}{0.06} \left(1 + \frac{0.08}{12} \right)^{12} - 1 \\
A = \frac{5000}{0.06} \left(1 + \frac{0.08}{12} \right)^{12} - 1
\]

Acceptable range
\[
54573.65 \text{ to } 54584
\]