Graphing Functions

Guidelines (4.5)

1. Find domain of f. (1.1)

2. Classify points of discontinuity (2.5)
 - removable (aka hole), jump, infinite, oscillatory, other

3. Find x- & y-intercepts. (Appendix C)

4. Look for symmetry.
 - y-axis, origin, other.

5. Find extrema: local or absolute. \(\{ \text{extrema} \} \subset \{ \text{critical} \} \) (Theorem 4.5)
 a. Find candidates for critical numbers. \(f' = 0 \) or \(f' = \text{DNE} \) (4.1)

 Candidates are critical #5s when they lie in \(\text{dom } f \).
 b. Determine sign f' on intervals to see where f increases/decreases. (4.3)

 Endpoints of intervals should include all candidates.

6. Find inflection points and concavity.
 a. Find candidates for inflection points. \(f'' = 0 \) or \(f'' = \text{DNE} \). (4.3)
 b. Determine sign of f'' on intervals to get concavity and

 inflection points.

 Endpoints of intervals should include all candidates.

7. Find asymptotes.
 a. Use #1s for infinite discont. (Step 2) to find vertical asymp.
 Determine \(\lim_{x \to \alpha^+} f \) and \(\lim_{x \to \alpha^-} f \).
 b. Find end behavior.
 \(y \approx \lim_{x \to \pm \infty} f(x) \Rightarrow y = \text{quotient} + 0 \)