Graphical ε-δ Proofs of Limits

If the limit does exist.

1. **Graph**: sketch $f(x)$.
2. **Graph**: mark L (on the y-axis).
3. **State**: "Let $\varepsilon > 0$, δ arbitrary."

 Graph: draw the lines $y = L + \varepsilon$ and $y = L - \varepsilon$.
4. **State**: "We can choose $\delta > 0$ so that ordered pairs $(x, f(x))$ lie inside the ε-δ rectangle for any x in $(a-\delta, a) \cup (a, a+\delta)$.

 Graph: choose δ small enough so that ordered pairs lie inside the ε-δ rectangle for any x in $(a-\delta, a+\delta)$, $x \neq a$. Sketch $x = a-\delta$, $x = a+\delta$.

 In other words, choose δ small enough so that $f(x)$'s lie inside the interval $(f(a) - \varepsilon, f(a) + \varepsilon)$ on y-axis for any x in $(a-\delta, a+\delta)$.
5. **State**: "ε was arbitrary, so even if ε were made smaller, we could find δ so that ordered pairs all lie inside the ε-δ rectangle."

If the limit does not exist.

1. **Graph**: sketch $f(x)$.
2. **Graph**: mark a best-guessed L (on the y-axis).
3. **State**: "Let $\varepsilon > 0$, δ arbitrary."

 Graph: Draw lines $y = L - \varepsilon$ and $y = L + \varepsilon$. Draw them close enough together so that some ordered pairs will not lie inside the ε-δ rectangle.
4. **State**: "Choose $\delta > 0$ in an attempt to make ordered pairs lie inside ε-δ-rect."

 Graph: Draw the lines $x = a-\delta$ and $a+\delta$.
5. **State**: "The ordered pairs do not lie inside the ε-δ rectangle for all x's in the interval $(a-\delta, a+\delta)$, $x \neq a$.

 Graph: show the "bad" ordered pairs.
6. **State**: "No matter how small δ is made, not all ordered pairs will lie inside the ε-δ rectangle."
7. **State**: "We showed that for a particular $\varepsilon > 0$, there was no $\delta > 0$ that would make all ordered pairs lie inside the ε-δ rectangle."
8. **State**: "Any other choice of L would result in the same trouble."