Theorem. (Pigeonhole Principle) Suppose m and n are positive integers such that $m > n$. If f is a function from $\{1, \ldots, m\}$ to $\{1, \ldots, n\}$, then f is not one-to-one.

Proof: This is a proof by induction on n. For the base case, suppose $n = 1$ and suppose f is a function from $\{1, \ldots, m\}$ to $\{1\}$. Then $f(1) = f(m)$ and $m > 1$, so f is not one-to-one.

Now suppose that the claim is true for some particular integer $n \geq 1$. (Normally we would use a different letter such as k, but soon we will be using several additional letters, and so this should be easier to follow.) So our inductive hypothesis is that if m is an integer greater than n and f is a function from $\{1, \ldots, m\}$ to $\{1, \ldots, n\}$, then f is not one-to-one.

We need to show that the claim is true for the integer $n + 1$. Suppose that m is an integer greater than $n + 1$ and f is a function from $\{1, \ldots, m\}$ to $\{1, \ldots, n + 1\}$. We will show that f is not one-to-one. There are three distinct cases to consider: (1) either f sends no integer to $n + 1$, or (2) f sends more than one integer to $n + 1$, or (3) f sends exactly one integer to $n + 1$.

Case 1: If $n + 1$ is not in the range of f, then in fact f is a function from $\{1, \ldots, m\}$ to $\{1, \ldots, n\}$. Since $m > n + 1 > n$, the induction hypothesis implies that f is not one-to-one, as desired.

Case 2: If there exist distinct integers $j, k \in \{1, \ldots, m\}$ such that $f(j) = f(k) = n + 1$, then clearly f is not one-to-one, as desired.
Case 3: Suppose that \(j \in \{1, \ldots, m\} \) is the only integer such that \(f(j) = n + 1 \). Define a new function \(g : \{1, \ldots, m\} \to \{1, \ldots, m\} \) which interchanges \(m \) with \(j \) and fixes all other integers in its domain. That is,

\[
 g(x) = \begin{cases}
 x & \text{if } x \neq j, m \\
 j & \text{if } x = m \\
 m & \text{if } x = j
\end{cases}
\]

By definition, \(g \) is one-to-one. Since \(j \) is the only integer that \(f \) sends to \(n + 1 \),

\[
 (f \circ g)(x) = f(g(x)) = n + 1 \iff g(x) = j.
\]

Since \(g \) is one-to-one, this occurs if and only if \(x = m \). Thus the composition \(f \circ g \) sends \(\{1, \ldots, m-1\} \) to \(\{1, \ldots, n\} \). Now \(m > n + 1 \), so \(m - 1 > n \), so by the inductive hypothesis, \(f \circ g \) is not one-to-one on the set \(\{1, \ldots, m - 1\} \). Since \(g \) is one-to-one, it follows that \(f \) cannot be one-to-one, as desired.

We are done by the principle of mathematical induction. \(\square \)

Corollary: The size of a nonempty finite set is well-defined. That is, if \(A \) is a nonempty finite set, then there exists a unique positive integer \(n \) such that \(A \cong \{1, \ldots, n\} \).

Proof: Suppose that there exist distinct positive integers \(m \) and \(n \) such that \(A \cong \{1, \ldots, m\} \) and \(A \cong \{1, \ldots, n\} \). Without loss of generality, we may assume \(m > n \). Since \(\{1, \ldots, m\} \cong \{1, \ldots, n\} \), there exists a one-to-one function from \(\{1, \ldots, m\} \) to \(\{1, \ldots, n\} \). However this contradicts the Pigeonhole Principle. Hence \(n \) is unique. \(\square \)

Note: Exercise #52 in section 5.1 on mathematical induction asks for a proof of this theorem, although there is no mention that this is a formal statement of the Pigeonhole Principle. The author's proof implicitly relies on the result of the corollary, which is a consequence of Corollary 1 on page 400, which the author proves using exercise #52 in section 5.1....