
Linux process schedulingLinux process scheduling

David Morgan

General General ““needinessneediness”” categoriescategories

� realtime processes
– whenever they demand attention, need it immediately

� other processes
– interactive – care about responsiveness

� demand no attention most of the time, don’t need it

� demand it occasionally, need it immediately then

– batch – don’t care about responsiveness

� demand attention frequently, don’t need it immediately

General strategiesGeneral strategies

� favor all realtime processes ahead of all other
processes

� favor interactive processes ahead of batch
processes
– by explicitly identifying and applying different

formulas, or (pre-kernel-2.6.23 O(1) scheduler)

– by applying a common formula (wait-time based)
tending to float interactives and sinks
batches (current kernel 2.6.23+ CFS scheduler)

General scheduling basicsGeneral scheduling basics

� multiple processes chosen to run for brief intervals
one-after-the-other

� choice based on process “merit” or “deservedness”

� different possible “merit” characteristics
– time a process has spent waiting (patience)

– relative importance of a process (priority)

� linux considers several characteristics in combination

� always chooses the “most deserving” process

cpu

decreasing wait time

task picked

to run

runqueue

(double-linked list of process descriptors)

Patience may be meritoriousPatience may be meritorious

cpu

decreasing wait time

task picked to run

(most patient among top priority)

Priority may also be meritoriousPriority may also be meritorious

in
cr

ea
si

n
g

 p
ri

o
ri

ty

A

B

C

Five Five ““scheduling classesscheduling classes””

SCHED_FIFO (first-in first-out)

SCHED_RR (round robin)

SCHED_NORMAL a.k.a SCHED_OTHER

F
O

R

R
E

A
L

T
IM

E

P
R

O
C

E
S

S
E

S

F
O

R

“
R

E
G

U
L

A
R

”

P
R

O
C

E
S

S
E

S

SCHED_BATCH

SCHED_IDLE

Different schedulersDifferent schedulers

SCHED_FIFO (first-in first-out)

SCHED_RR (round robin)

SCHED_NORMAL

T
h

e

“
re

a
lt

im
e

sc
h

ed
u

le
r”

T
h

e

“
co

m
p

le
te

ly
 f

a
ir

sc
h

ed
u

le
r

(C
F

S
)”

SCHED_BATCH

SCHED_IDLE

Priority scalePriority scale

R
E

A
L

T
IM

E

REGULAR 0

99
in

cr
ea

si
n
g

 p
ri

o
ri

ty

1

Realtime requirementsRealtime requirements

� low latency

� deterministic response time

� settings
– financial trading

– medical devices

– defense

– industrial automation

– autonomous (self-driving) cars

Realtime trumps regularRealtime trumps regular

in
cr

ea
si

n
g

 p
ri

o
ri

ty

99

98

1

R
E

A
L

T
IM

E

…
REGULAR0

Former priority scale*Former priority scale*
R

E
A

L
T

IM
E

R
E

G
U

L
A

R

100

139

0

99
-20

+19
in

cr
ea

si
n
g

 p
ri

o
ri

ty
*reflected in literature*reflected in literature

cpu

task picked to run

(first in not-yet-served line)

Former priority implementationFormer priority implementation

active

expired

“Each process is given a fixed time quantum, after which it is preempted and moved to the expired array.

Once all the tasks from the active array have exhausted their time quantum and have been moved to

the expired array, while the expired array becomes the active array.”

already served

not yet served

Input to scheduling decisionsInput to scheduling decisions
SCHED_SETSCHEDULER(2) Linux Programmer's Manual SCHED_SETSCHEDULER(2)

NAME

sched_setscheduler

SYNOPSIS

int sched_setscheduler(pid_t pid, int policy, const struct sched_param *param);

struct sched_param { ...

int sched_priority; ...

};

DESCRIPTION

Scheduling Policies

The scheduler is the kernel component that decides which runnable pro-

cess will be executed by the CPU next. Each process has an associated

scheduling policy and a static scheduling priority, sched_priority;

these are the settings that are modified by sched_setscheduler(). The

scheduler makes it decisions based on knowledge of the scheduling pol-

icy and static priority of all processes on the system.

(see sched_setscheduler.man.abridged.txt)

“priority” here

“policy” here

Input to scheduling decisionsInput to scheduling decisions
DESCRIPTION

Currently, Linux supports the following "normal"

(i.e., non-real-time) scheduling policies:

SCHED_OTHER the standard round-robin time-sharing policy;

SCHED_BATCH for "batch" style execution of processes; and

SCHED_IDLE for running very low priority background jobs.

The following "real-time" policies are also supported, for special

time-critical applications that need precise control over the way in

which runnable processes are selected for execution:

SCHED_FIFO a first-in, first-out policy; and

SCHED_RR a round-robin policy.

Scheduling Policies

SCHED_FIFO: First In-First Out scheduling

SCHED_FIFO can only be used with static priorities higher than 0, which

means that when a SCHED_FIFO processes becomes runnable, it will always

immediately preempt any currently running SCHED_OTHER, SCHED_BATCH, or

SCHED_IDLE process.

SCHED_OTHER: Default Linux time-sharing scheduling

SCHED_OTHER can only be used at static priority 0. SCHED_OTHER is the

standard Linux time-sharing scheduler that is intended for all

processes that do not require the special real-time mechanisms.

Scheduling class implementationScheduling class implementation

“Completely Fair Scheduler,” Linux Journal, August 2009

for SCHED_OTHER

SCHED_BATCH

SCHED_IDLE

(the “normal” classes)

for SCHED_FIFO

SCHED_RR

(the “realtime” classes)

Resembles object-oriented class hierarchy

Correct handler selected per scheduling
class of each particular process

Extensible, for implementing

future scheduling classes with

new scheduling algorithms

Two demo programs Two demo programs (heavy loops)(heavy loops)

DESCRIPTION

Currently, Linux supports the following "normal"

(i.e., non-real-time) scheduling policies:

SCHED_OTHER the standard round-robin time-sharing policy;

SCHED_BATCH for "batch" style execution of processes; and

SCHED_IDLE for running very low priority background jobs.

The following "real-time" policies are also supported, for special

time-critical applications that need precise control over the way in

which runnable processes are selected for execution:

SCHED_FIFO a first-in, first-out policy; and

SCHED_RR a round-robin policy.

Scheduling Policies

SCHED_FIFO: First In-First Out scheduling

SCHED_FIFO can only be used with static priorities higher

than 0, which means that when a SCHED_FIFO processe

becomes runnable, it will always immediately preempt

any currently running SCHED_OTHER, SCHED_BATCH,

or SCHED_IDLE process.

SCHED_OTHER: Default Linux time-sharing scheduling

SCHED_OTHER can only be used at static priority 0.

SCHED_OTHER is the standard Linux time-sharing

scheduler that is intended for all processes that do not

require the special real-time mechanisms.

realtime

non-realtime

Binary treesBinary trees

� elements have up to 2 child elements

� left child sorts less, right more, than parent

� tree has a depth

� tree has a balance, comparing depths of its left and
right trees (greater difference, less balance)

31jan

31mar28feb

31jul 30sep31aug

31dec 31oct

30apr 31may30jun

30nov

input sequence: jan, feb, mar, apr, may, june, july, aug, sept, oct, nov, dec (chronological)

Binary tree of months,Binary tree of months,

for daysfor days--perper--month determinationmonth determination

Depth: 4

Max comparisons: 6

Average comparisons: 3.5

A skewed treeA skewed tree

31jan

31jul

31mar

30apr

31dec

30sep

28feb

31aug

31oct

31may

30jun

30nov

input sequence: apr, aug, dec, feb, jan, july, june, mar, may, nov, oct, sept (alphabetical)

Depth: 12

Max comparisons: 12

Average comparisons: 6.5

search cost O(N)

12 elements � 12 comparisons

N elements � N comparisons

input sequence: july, feb, may, aug, dec, mar, oct, apr, jan, june, sept, nov

31jul

31jan 31mar31aug 31oct

31feb 31may

31apr 31dec 31sep31jun 31nov

A balanced treeA balanced tree

Depth: 4

Max comparisons: 4

Average comparisons: 3.1

search cost O(log N)

2 levels � 3 elements � 2 comparisons

3 levels � 7 elements � 3 comparisons

4 levels � 15 elements � 4 comparisons

L levels � 2L-1 elements � L comparisons, or

log(N+1) levels � N elements � log(N+1) comparisons

7jacobs

2jones6brown

5anders 4smith1miller

Binary tree of last names,Binary tree of last names,

for data record determinationfor data record determination

Recno name rank serial no

1 miller corporal 4-139

2 jones major 3-209

3 baker private 7-981

4 smith lieutenant 3-101

5 anders private 8-388

6 brown sargeant 8-231

7 jacobs captain 6-495

8 johnson general 4-556

Database

Numbers developed to reflect variance between ideal and actual CPU utilization for each process

Smallest number � greatest variance (most “underserved”)

Smallest gets CPU. While it runs its metric rises while the others’ all fall till one of them undercuts, then it becomes the

new running process

cal107

less103 ksh151tr93 rm280

grep102 ps201

cp72 sort96 cat315mv126 vi215

Binary tree of number metrics,Binary tree of number metrics,

for process determinationfor process determination

Tree balanceTree balance

� depends on insertion sequence

� balance achievable independent of sequence, by
performing mid-course re-balancing
� during insertion, whenever an insertion upsets the

balance, re-balance dynamically before inserting next
element

� tree never gets unbalanced, so final result is always
balanced

input sequence: 1, 2, 3, 4, 5

Building tree, no rebalancingBuilding tree, no rebalancing

1 1

2

3

4

5

1

2

3

4

1

2

3

1

2

insert 1 insert 2 insert 3 insert 4 insert 5

final tree unbalanced

input sequence: 1, 2, 3, 4, 5

Building tree, midBuilding tree, mid--course recourse re--balancingbalancing

1 1

2

3

1

2

1

2

3

1

2

3

4

5

1

2

4

53

insert 1 insert 2 insert 3 insert 4

re-balance

1

2

3

4

re-balance

insert 5

final tree balanced

/proc/sched_debug

More informationMore information

� scheduler author Ingo Molnar

– http://people.redhat.com/mingo/cfs-scheduler/sched-

design-CFS.txt

� “Multiprocessing with the Completely Fair
Scheduler”

– http://www.ibm.com/developerworks/linux/library/l-

cfs/index.html

