Nomenclature – A Summary

Ionic Compounds

- **Metal Cations + Non-Metal Anions, or, Polyatomic Ions**
 - Names and formulas always start with the positively charged cation.
 - Ions are combined in ratios so that the final ionic compound is neutral.
 - Never use prefixes in the names of ionic compounds. The cation name is simply combined with the anion name only.
 - If a metal can form more than one cation, the cation charge is included in the name as a Roman numeral in brackets.
 - Several ion names, charges and formulas are provided here (on second page). They must be memorized.

Examples

- K_2S
 - 2 K^{+1} cations and 1 S^{-2} anion
 - Potassium sulfide
- $FeCl_3$
 - 1 Fe^{+3} cation and 3 Cl^{-1} anions
 - Iron(III) chloride
- $Mg_3(PO_4)_2$
 - 3 Mg^{+2} cations and 2 PO_4^{-3} anions
 - Magnesium phosphate

Covalent Compounds

- **Non-Metal Atoms only**
 - The more metallic non-metal is written first.
 - Prefixes are used in the name to indicate the number of each atom present. A list of prefixes 1-10 (and 12) is provided here (on reverse side). They must be memorized.
 - The prefix “mono” is dropped if there is only one of the first element.
 - The name of the second element always ends in __ide.

Examples

- P_4S_3
 - 4 P atoms and 3 S atoms
 - Tetraphosphorus trisulfide
- N_2O
 - 2 N atoms and 1 O atom
 - Dinitrogen monoxide
- $BrCl_5$
 - 1 Br atom and 5 Cl atoms
 - Bromine pentachloride

Acids

- **Hydrogen Cations + Non-Metal Anions, or, Polyatomic Anions**
 - H always leads the formula.
 - Acids are in the aqueous state.
 - Ions are combined in ratios so that the final acid is neutral.
 - The acid name depends on the name of the anion involved:

 \[
 H^{+1} + \text{Anion} \rightarrow \text{Acid} \\
 _____ide \quad h_ydro_ic \ acid \\
 ___ate \quad ___ic \ acid \\
 ___ite \quad ___ous \ acid
 \]

Examples

- $HBr (aq)$
 - 1 H^{+1} cation and 1 Br^{-1} anion (bromide)
 - Hydrobromic acid
- $HNO_3 (aq)$
 - 1 H^{+1} cation and 1 NO_3^{-1} anion (nitrate)
 - Nitric acid
- $H_2SO_3 (aq)$
 - 2 H^{+1} cations and 1 SO_3^{-2} anion (sulfite)
 - Sulfurous acid
Common Monatomic Metal Cations and Non-Metal Anions

<table>
<thead>
<tr>
<th>1A</th>
<th>2A</th>
<th>3A 4A</th>
<th>5A 6A</th>
<th>7A 8A</th>
</tr>
</thead>
<tbody>
<tr>
<td>H⁺¹</td>
<td>in acids</td>
<td>C⁺⁴</td>
<td>N⁻³</td>
<td>O⁻²</td>
</tr>
<tr>
<td>Li⁺¹</td>
<td>Be⁺²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na⁺¹</td>
<td>Mg⁺²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K⁺¹</td>
<td>Ca⁺² Ti⁺⁴ Ti⁺⁶</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr⁺² Cr⁺³ Cr⁺⁶ Mn⁺² Mn⁺⁴</td>
<td>Fe⁺² Fe⁺³</td>
<td>Co⁺² Ni⁺³</td>
<td>Cu⁺¹ Cu⁺²</td>
<td>Zn⁺² Ga⁺³</td>
</tr>
<tr>
<td>Ag⁺¹ Cd⁺²</td>
<td>In⁺¹ In⁺³</td>
<td>Sn⁺² Sn⁺⁴</td>
<td>I⁻¹</td>
<td></td>
</tr>
<tr>
<td>Cs⁺¹ Ba⁺²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Polyatomic Ions

OH⁻¹	Hydride	O₃⁻²	Peroxide
CN⁻¹	Cyanide	CO₃⁻²	Carbonate
SCN⁻¹	Thiocyanate	SO₃⁻²	Sulfite
HCO₃⁻¹	Bicarbonate (Hydrogen Carbonate)	SO₄⁻²	Sulfate
HSO₃⁻¹	Bisulfite (Hydrogen Sulfite)	S₂O₃⁻²	Thiosulfate
HSO₄⁻¹	Bisulfate (Hydrogen Sulfate)	C₅O₄⁻²	Oxalate
C₂H₃O₂⁻¹ Acetate	Cr₂O₇⁻²	Chromate	
NO₂⁻¹ Nitrite	Cr₂O₅⁻²	Dichromate	
NO₃⁻¹ Nitrate	MnO₄⁻¹ Permanganate		
ClO⁻¹ HyPOCHlorite	PO₃⁻³	Phosphite	
ClO₂⁻¹ Chlorite	PO₄⁻³	Phosphate	
ClO₃⁻¹ Chlorate	NH₄⁺¹ Ammonium		
ClO₄⁻¹ Perchlorate	Hg₂⁺² Mercury (I)		

Prefixes for Covalent Compounds

| 1 mono | 2 di | 3 tri | 4 tetra | 5 penta | 6 hexa | 7 hepta | 8 octa | 9 nona | 10 deca | 11 undeca | 12 dodeca |