4. Marine Sediments - part 1

notes from textbook, integrated with original contributions

Alessandro Grippo, Ph.D.
Chapter Overview

• Marine sediments contain a record of Earth history

• Marine sediments provide a variety of important resources

• Marine sediments have a variety of origins
what are sediments?

• there are **three kind of rocks**
 – igneous (from cooling of magma or lava)
 – metamorphic (from exposure to high temperatures and/or pressures)
 – sedimentary (from cementation of rock fragments and/or precipitation from a solution)

• all rocks can be weathered, producing **sediments**
 – mechanical weathering
 – chemical weathering
mechanical weathering

- all physical processes that **break down** rocks in smaller fragments

- fragments are identified by their size as **gravel**, **sand**, **silt**, and **clay** (silt and clay together are defined as **mud**)

<table>
<thead>
<tr>
<th>Size</th>
<th>GRAVEL</th>
<th>SAND</th>
<th>SILT</th>
<th>CLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/16 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/256 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
chemical weathering: action of oxygen

- all chemical processes that change the composition of rocks
- two agents: oxygen and acids
- the action of oxygen in the atmosphere and in water causes iron minerals present in rocks to “rust” (*iron oxides*)

- \[4\text{Fe} + 3\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 \] (hematite)
chemical weathering: action of acids

• the action of acids “corrodes” rocks and turns them into quartz, clay minerals, and ions in solution

• Quartz
 – a very common, resistant mineral
 – typical component of sand at the beach

• Clay Minerals
 – a very common byproduct of weathering
 – have special properties: they are flat, they absorb water and ions, they “swell”,

• Ions in solution
 – anything mineral that can be dissolved in water (Ca$^{2+}$, Mg$^{2+}$, Fe$^{2+}$, Na$^+$, K$^+$, CO$_3^{2-}$, etc.)
what is next?

• now we have a bunch of loose fragments at earth’s surface, and ions in solution

• they are picked up (eroded), moved around (transported) and resettled somewhere else (deposition) by:
 – water (rivers)
 – wind
 – glaciers
 – directly by rockfall/landslides
sand is picked up
then it is moved around by rivers, wind, waves; it gets more weathered
it is then deposited (but it can also be picked up again)
it will get finally buried by more recent sediment
the weight compacts the sand
water enters the pores
ions in solution are released (cement), turning the sand into a sandstone
and what about ions in solution?

- they need to “stay hydrated” (ions surrounded by water molecules)
- if there is not enough water, ions crystallize and form rocks (or cement, as seen before)
- main types:
 - carbonates (most common type; limestone)
 - siliceous rocks (rich in silica; chert)
 - evaporites (form in dry environments – not in the ocean; halite, or rock salt, gypsum)
Marine Sediments

- In the end, many sediments are produced on land (lithogenous sediments)

- While some of these are deposited on land, most are carried to the ocean (marine sediments)

- Some other types of sediments (biogenous and hydrogenous) are produced directly in the ocean

- Whatever type of sediment reaches or is produced in the ocean would eventually settle through the water column

- Oceanographers decipher Earth history through studying sediments
4.1 – How Are Marine Sediments Collected, and What Historical Events Do They Reveal?

• Marine sediments of today can be collected directly from the ocean bottom
 – difficult to get to

• Marine sediments of the past that have turned into sedimentary rocks can be found in land outcrops
 – easier to get to but scattered samples
collecting Marine Sediments

• dredge
• gravity corer
• rotary drilling
 – NSF funded a program for borrowing drilling technologies from the industry
 – Four oceanographic institutions (Scripps, Rosenstiel, Woods Hole, Lamont-Doherty) united to form JOIDES (Joint Oceanographic Institutions for Deep Earth Sampling)
 – Other schools later joined JOIDES
collecting Marine Sediments

• JOIDES programs
 – DSDP (Deep Sea Drilling Project)
 • 1966, Glomar Challenger, sampled to 6000 m of depth
 • evidence of spreading (age of sediment, thickness of sediments, magnetic reversals)
 – ODP (Ocean Drilling Program)
 • 1975, 1983 became international, under Texas A& M
 • broader objective of drilling close to shelf
 • in 1985, JOIDES Resolution replaced Glomar Challenger
 • new ship can drill up to 2100 m below sea floor
Glomar Challenger & JOIDES Resolution

- IODP (Integrated Ocean Drilling Program)
 - 2003, then in 2013 as Integrated Ocean Discovery Program
 - multiple vessels, including Chikyu
 - collection of sediments cores from all over the world
Chikyu

• “Planet Earth”
• how do we drill
 – (www.youtube.com/watch?v=yuu0QcnOVbo)
The drilling system of Chikyu

Riser Drilling System of Chikyu
- Drilling fluid is pumped down through drillpipe
- Drilling fluid and cuttings flow up between the drillpipe and the riser

Conventional Riserless System
- Drilling fluid is pumped down through drillpipe
- Drilling fluid and cuttings flow into ocean

- U.S. scientific drilling ship, JOIDES Resolution
- European Mission Specific Platform, etc.
Upper left: drilling pipes on the deck of JOIDES Resolution

Upper right: diamond drilling bit (a drilling bit would not give us a core, but rather “rock cuttings’, or fragments

Bottom left: analysis of halved cores on board the JOIDES Resolution
Environmental Conditions Revealed by Marine Sediments

• Marine Sediments preserve materials that existed in the overlying water columns

• These materials are function of the conditions of the environment

• Analysis of cores provides us with info about:
 – ancient sea surface temperature
 – abundance of marine life and major extinction events
 – atmospheric winds and volcanic eruptions
 – ocean current patterns and changes in Earth’s climate
 – movement of tectonic plates
Paleoceanography

- The study of how ocean, atmosphere, and land interactions have produced changes in ocean chemistry, circulation, biology, and climate

- Marine sediments provide clues to past changes
Marine sediments also exist on land: turned into rocks, and brought above sea level by plate tectonics.

These are turbidites from the Great Falls of the Missouri, by the city of Great Falls, Montana (at this location the explorer Lewis and Clark could not proceed any further on the river, and had to start their portage on the Great Plains).

© Alessandro Grippo
Marine Sediment Classification

- Classified by origin
 - **Lithogenous** – derived from land (lithos = rock)
 - gravel, sand, silt, clay
 - ions in solution
 - **Biogenous** – derived from organisms
 - shells, reefs, animal and algal structures
 - **Hydrogenous** or **Authigenic** – derived from water
 - forming chemically in the ocean
 - **Cosmogenous** – derived from outer space
 - cosmic “dust”
4.2 – What Are the Characteristics of Lithogenous Sediment?

- Eroded rock fragments from land
- Also called *terrigenous*
- Reflect composition of rock from which derived
- Produced by *weathering*
 - Breaking of rocks into smaller pieces

![Diagram of lithogenous sediment formation](image)
• Particles are eroded, transported, deposited
• Carried towards the ocean by:
 – Streams, Wind, Glaciers, Gravity

• Greatest quantity found around continental margins
 – mostly on shelves
 – also in continental rises or trenches
Composition and Texture

- Reflect composition of rock from which derived
- Coarser sediments closer to shore
- Finer sediments farther from shore
- Mainly mineral quartz (SiO₂)
• Grain size proportional to energy in the environment of deposition

<table>
<thead>
<tr>
<th>Size range (millimeters)</th>
<th>Particle name</th>
<th>Grain size</th>
<th>Example</th>
<th>Energy of the depositional environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above 256</td>
<td>Boulder</td>
<td>Coarse-grained</td>
<td>Coarse material found in streambeds near the source areas of rivers</td>
<td>High energy</td>
</tr>
<tr>
<td>64 to 256</td>
<td>Cobble</td>
<td>Coarse-grained</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 to 64</td>
<td>Pebble</td>
<td>Coarse-grained</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 to 4</td>
<td>Granule</td>
<td>Gravel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/16 to 2</td>
<td>Sand</td>
<td>Fine-grained</td>
<td>Beach sand</td>
<td></td>
</tr>
<tr>
<td>1/256 to 1/16</td>
<td>Silt</td>
<td>Fine-grained</td>
<td>Feels gritty in teeth</td>
<td></td>
</tr>
<tr>
<td>1/4096 to 1/256</td>
<td>Clay</td>
<td>Fine-grained</td>
<td>Microscopic; feels sticky</td>
<td>Low energy</td>
</tr>
</tbody>
</table>

© 2011 Pearson Education, Inc.

• Grain size sorting
 – Indication of selectivity of transportation and deposition processes

• Textural maturity
 – Increasing maturity if
 • Clay content decreases
 • Sorting increases
 • Non-quartz minerals decrease
 • Grains are more rounded (abraded)
Where do we find these sediments in our oceans?

• Marine sedimentary deposits can be found in virtually all places on the ocean floor, even if sometimes in very minor percentages.

• The can be categorized as either neritic or pelagic

• **Neritic Deposits** are found on continental shelves and in shallow waters around islands
 – usually coarse-grained (sands)

• **Pelagic Deposits** are found in deep-ocean basins
 – usually fine-grained (silts and clays)
Neritic Deposits

• Beach deposits
 – Grains of all kinds brought to the coast by rivers
 – Weathering slowly modifies grain composition into quartz-rich sands
 – Wave motion causes transportation
• Continental shelf deposits
 – Relict sediments: left over as underwater former beach sediment
 – formed during the last (or any previous) ice age peak, then flooded during the interglacial
 – sometimes showing above sea level as barrier islands
• **Turbidite deposits**
 – Sands and muds in Continental Rise
 – Graded bedding

• **Glacial deposits**
 – High latitude continental shelf
 – Currently forming by ice rafting (icebergs carrying rocks into ocean, called *dropstones*)
Above: an iceberg carrying sediment to the ocean in Portage Lake, Chugach National Forest, Chugach Mountains, Alaska.
Photo © USGS

Right: a dropstone in cross-sectional view, Namibia
Photo © David L. Reid

both images from:
http://serc.carleton.edu/NAGTWorkshops/sedimentary/images/dropstones.html
Pelagic Deposits

• Fine-grained material
• Accumulates slowly on deep ocean floor
• Pelagic lithogenous sediment from
 – Volcanic ash (volcanic eruptions)
 – Wind-blown dust
 – Fine-grained material transported by deep ocean currents

• Abyssal Clay
 – At least 70% clay sized particles from continents
 – Red from oxidized iron (Fe)
 – Abundant if other sediments absent

Rhythmic alternations of deep-marine (pelagic) biogenous (white limestones) and terrigenous (red abyssal clays) sediments

Mid Cretaceous
Piobbico Core, Pesaro-Urbino, Italy
© Alessandro Grippo
• end of part 1